分析 把x1,x2代入到f(x)中求出函數(shù)值代入不等式f(x1)+f(x2)≤0中,在利用根與系數(shù)的關(guān)系化簡得到關(guān)于a的不等式,求出解集即可.
解答 解:因f(x1)+f(x2)≤0,故得不等式x13+x23+(1+a)(x12+x22)+a(x1+x2)≤0.
即(x1+x2)[(x1+x2)2-3x1x2]+(1+a)[(x1+x2)2-2x1x2]+a(x1+x2)≤0.
由于f′(x)=3x2+2(1+a)x+a.
令f′(x)=0得方程3x2+2(1+a)x+a=0.
△=4(a2-a+1)≥4a>0,x1+x2=-$\frac{2}{3}$(1+a),x1x2=$\frac{a}{3}$,
代入前面不等式,并化簡得(1+a)(2a2-5a+2)≥0.
解不等式得$\frac{1}{2}$≤a≤2或a≤-1,
因此,實數(shù)a的取值范圍是$\frac{1}{2}$≤a≤2或a≤-1.
故答案為:$\frac{1}{2}$≤a≤2或a≤-1.
點評 本題考查學(xué)生求導(dǎo)數(shù)及利用導(dǎo)數(shù)研究函數(shù)極值的能力,靈活運用一元二次方程根與系數(shù)的關(guān)系解決數(shù)學(xué)問題的能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3個 | B. | 4個 | C. | 5個 | D. | 7個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | -2i | C. | i | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com