已知函數(shù)f(x)=x2+3x|x-a|,其中a∈R.
(1)當a=2時,把函數(shù)f(x)寫成分段函數(shù)的形式,并畫出函數(shù)f(x)的圖象;
(2)問是否存在正數(shù)a,使得函數(shù)f(x)在區(qū)間(1,3)上既有最大值又有最小值.若存在,求出a的取值范圍;若不存在,請說明理由.
分析:(1)利用絕對值的幾何意義,可得分段函數(shù),從而可得函數(shù)的圖象;
(2)當a>0時,由函數(shù)的圖象可知,要使得函數(shù)f(x)在開區(qū)間(m,n)內(nèi)既有最大值又有最小值,則最小值一定在x=a處取得,最大值在x=
3
4
a
處取得,從而可得不等式組,由此可得結(jié)論.
解答:解:(1)當a=2時,f(x)=x2+3x|x-2|=
4x2-6x,x≥2
-2x2+6x,x<2
,此時f(x)的圖象如圖所示:…(5分)

(2)當a>0時,由函數(shù)的圖象可知,要使得函數(shù)f(x)在開區(qū)間(m,n)內(nèi)既有最大值又有最小值,則最小值一定在x=a處取得,最大值在x=
3
4
a
處取得.
由題意得
3
4
a>1
a<3
f(1)>f(a)
f(3)<f(
3
4
a)

又f(a)=a2,f(
3
4
a)=
9
8
a2
,f(1)=3a-2,f(3)=36-9a,
代入得
3
4
a>1
a<3
3a-2>a2
36-9a<
9
8
a2
4
3
<a<3
1<a<2
a>4
3
-4,或a<-4
3
-4
,無解.
所以滿足條件的實數(shù)a不存在.                                    …(10分)
點評:本題考查函數(shù)的最值,考查數(shù)形結(jié)合的數(shù)學思想,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案