4.過拋物線y2=2px(p>0)的焦點F的直線l依次交拋物線及其準線于點A、B、C,若|AF|=2,$\overrightarrow{CB}$=2$\overrightarrow{BF}$,則拋物線的方程為( 。
A.y2=xB.y2=2xC.y2=4xD.y2=8x

分析 分別過A、B作準線的垂線,利用拋物線定義將A、B到焦點的距離轉化為到準線的距離,利用△BCD∽△FCG即可得p值,進而可得方程.

解答 解:分別過點A,B作準線的垂線,分別交準線于點E,D
由$\overrightarrow{CB}$=2$\overrightarrow{BF}$,可知:丨$\overrightarrow{CB}$丨=2丨$\overrightarrow{BF}$丨,設|BF|=a,則|BC|=2a,|BD|=a,
∴∠BCD=30°,
在直角三角形ACE中,
∵|AF|=2,|AC|=2+3a,
∴2|AE|=|AC|,
∴2+3a=4,即a=$\frac{2}{3}$,
|CF|=2,
∴sin∠BCD=$\frac{丨GF丨}{丨CF丨}$=$\frac{p}{2}$,解得p=1,
∴拋物線方程為y2=2x.
故選:B.

點評 本題考查拋物線的定義及其應用,拋物線的幾何性質,過焦點的弦的弦長關系,轉化化歸的思想方法,屬中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知拋物線的方程為標準方程,焦點在x軸上,其上點P(-3,m)到焦點F1的距離為5,則拋物線方程為(  )
A.y2=8xB.y2=-8xC.y2=4xD.y2=-4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.復數(shù)Z=1+i,則$\frac{1}{Z}$+Z對應的點所在象限為(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知sinθ=$\frac{1}{3}$,θ∈($\frac{π}{2}$,π),則cosθ=( 。
A.$\frac{{2\sqrt{2}}}{3}$B.$-\frac{2}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$-\frac{12}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知曲線C:y2=4x的焦點為F,過點F的直線l與曲線C交于P,Q兩點,且$\overrightarrow{FP}$+2$\overrightarrow{FQ}$=$\overrightarrow 0$,則△OPQ的面積等于(  )
A.$2\sqrt{2}$B.$3\sqrt{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{3\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.若不等式t2-at+1≥0對任意的t∈R+恒成立,則實數(shù)a的取值范圍是a≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.若x2+x-3=0,求x5+2x4-2x3-2x2+x-1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知經過點A(-3,-2)的直線與拋物線C:x2=8y在第二象限相切于點B,記拋物線C的焦點為F,則直線BF的斜率是-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,銳角α的頂點在坐標原點,始邊與x軸正半軸重合,終邊與單位圓交于點A(x1,y1),將射線OA繞原點按逆時針方向旋轉$\frac{π}{3}$后與單位圓交于點B(x2,y2),記函數(shù)f(α)=y1+y2
(1)求函數(shù)f(α)的值域;
(2)比較f($\frac{1}{2}$)和f($\frac{3}{2}$)的大小,并說明理由.

查看答案和解析>>

同步練習冊答案