A. | (1,$\sqrt{2}$) | B. | ($\frac{2\sqrt{3}}{3}$,+∞) | C. | (1,$\frac{2\sqrt{3}}{3}$) | D. | ($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$) |
分析 確定雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的兩條漸近線方程,求得A,B的坐標(biāo),利用90°<∠AFB<120°,可得1<kFB<$\sqrt{3}$,
運(yùn)用兩點(diǎn)的斜率公式和a,b,c的關(guān)系,由此可求雙曲線的離心率的取值范圍.
解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的兩條漸近線的兩條漸近線方程為y=±$\frac{a}$x,
x=$\frac{{a}^{2}}{c}$時(shí),y=±$\frac{ab}{c}$,
∴A($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),B($\frac{{a}^{2}}{c}$,-$\frac{ab}{c}$),
∵90°<∠AFB<120°,F(xiàn)(c,0),
由對(duì)稱性可得tan45°<kFB<tan60°,
即有1<$\frac{\frac{ab}{c}}{c-\frac{{a}^{2}}{c}}$<$\sqrt{3}$,
即為1<$\frac{a}$<$\sqrt{3}$,
而e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$∈($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$).
故選:D.
點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率的求法,考查學(xué)生的計(jì)算能力,正確尋找?guī)缀瘟恐g的關(guān)系是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱 | B. | 關(guān)于直線x=$\frac{5π}{12}$對(duì)稱 | ||
C. | 關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱 | D. | 關(guān)于直線x=$\frac{π}{12}$對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的值域?yàn)椋?)
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北省高二文上第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題
某一考點(diǎn)有個(gè)試室,試室編號(hào)為,現(xiàn)根據(jù)試室號(hào),采用系統(tǒng)抽樣的方法,抽取個(gè)試室進(jìn)行監(jiān)控抽查,已抽看了試室號(hào),則下列可能被抽到的試室號(hào)是
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com