17.曲線$\left\{{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}}\right.$(α為參數(shù))上的點(diǎn)到曲線ρcosθ-ρsinθ+1=0的最大距離為$\sqrt{2}+1$.

分析 把曲線C的參數(shù)方程化為普通方程為 (x-1)2+y2=1,表示以(1,0)為圓心,半徑等于1的圓.求出圓心到直線的距離,將此距離再加上半徑,即得所求.

解答 解:∵曲線$\left\{{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}}\right.$(α為參數(shù)),消去參數(shù)化為普通方程為 (x-1)2+y2=1,
表示以(1,0)為圓心,半徑等于1的圓.
曲線ρcosθ-ρsinθ+1=0,即x-y+1=0,圓心到直線x-y+1=0的距離為d=$\sqrt{2}$,
故曲線C上的點(diǎn)到直線x-y+1=0的距離的最大值為$\sqrt{2}+1$,
故答案為$\sqrt{2}+1$.

點(diǎn)評(píng) 本題主要考查把參數(shù)方程化為普通方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,直線和圓的位置關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知數(shù)列{an}中,a1=1,an+1=an+3,若an=2 017,則n=( 。
A.667B.668C.669D.673

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.無(wú)錫市政府決定規(guī)劃地鐵三號(hào)線:該線起於惠山區(qū)惠山城鐵站,止於無(wú)錫新區(qū)碩放空港產(chǎn)業(yè)園內(nèi)的無(wú)錫機(jī)場(chǎng)站,全長(zhǎng)28公里,目前惠山城鐵站和無(wú)錫機(jī)場(chǎng)站兩個(gè)站點(diǎn)已經(jīng)建好,余下的工程是在已經(jīng)建好的站點(diǎn)之間鋪設(shè)軌道和等距離修建?空荆(jīng)有關(guān)部門(mén)預(yù)算,修建一個(gè)?空镜馁M(fèi)用為6400萬(wàn)元,鋪設(shè)距離為x公里的相鄰兩個(gè)?空局g的軌道費(fèi)用為400x3+20x萬(wàn)元.設(shè)余下工程的總費(fèi)用為f(x)萬(wàn)元.(停靠站位于軌道兩側(cè),不影響軌道總長(zhǎng)度)
(1)試將f(x)表示成x的函數(shù);
(2)需要建多少個(gè)停靠站才能使工程費(fèi)用最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知$\overrightarrow{a}$=(λ+1,0,2λ),$\overrightarrow$=(6,0,2),$\overrightarrow{a}$∥$\overrightarrow$,則λ的值為( 。
A.$\frac{1}{5}$B.5C.$-\frac{1}{5}$D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=2x,若從區(qū)間[-2,2]上任取一個(gè)實(shí)數(shù)x,則使不等式f(x)>2成立的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2016}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知$\frac{{2cos(\frac{3}{2}π+θ)+cos(π+θ)}}{{3sin(π-θ)+2sin(\frac{5}{2}π+θ)}}=\frac{1}{5}$;
(1)求tanθ的值;
(2)求sin2θ+3sinθcosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(1)已知角α的終邊上一點(diǎn)P的坐標(biāo)為$(-\sqrt{3},2)$,求sinα,cosα和tanα.
(2)在[0°,720°]中與-21°16′終邊相同的角有哪些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.根據(jù)條件回答下列問(wèn)題:
(1)求函數(shù)y=lg(tanx)的定義域;
(2)求函數(shù)$y=\frac{3sinx+1}{sinx-2}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=x2+bx-alnx(a≠0)
(1)當(dāng)b=0時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)若x=2是函數(shù)f(x)的極值點(diǎn),1是函數(shù)f(x)的一個(gè)零點(diǎn),求a+b的值;
(3)若對(duì)任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案