14.已知x,y滿足$\left\{{\begin{array}{l}{x-3≥0}\\{y-x≤0}\\{x+y-3≥0}\end{array}}\right.$,則目標函數(shù)z=-2x+y的最大值為-3.

分析 首先畫出可行域,利用目標函數(shù)等于直線在y軸的截距最大值求z 的最大值.

解答 解:x,y滿足的平面區(qū)域如圖:
當直線y=2x+z經(jīng)過圖中的A時,
z最大,由$\left\{\begin{array}{l}{x=3}\\{x-y=0}\end{array}\right.$得到A(3,3),所以z=-2×3+3=-3;
故答案為:-3.

點評 本題考查了簡單線性規(guī)劃問題;關(guān)鍵是正確畫出可行域,利用目標函數(shù)的幾何意義求最值.考查數(shù)形結(jié)合的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.奇函數(shù)f(x)在區(qū)間[3,5]上是減函數(shù),且最小值為3,則f(x)在區(qū)間[-5,-3]上是( 。
A.增函數(shù),且最大值是-3B.增函數(shù),且最小值是-3
C.減函數(shù),且最小值是-3D.減函數(shù),且最大值是-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若“?x∈[0,$\frac{π}{3}$],tanx≤m”是真命題,則實數(shù)m的最小值為(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x2+bx+c,
(1)若函數(shù)f(x)是偶函數(shù),求實數(shù)b的值
(2)若函數(shù)f(x)在區(qū)間[-1,3]上單調(diào)遞增,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知sin(x+$\frac{π}{4}$)=$\frac{1}{4}$,則sin2x的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{8}$D.-$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題p:?x∈R,cosx>sinx-1的否定為?x∈R,cosx≤sinx-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為矩形,且PD=AD=$\frac{1}{2}$AB,E為PC的中點.
(1)過點A作一條射線AG,使得AG∥BD,求證:平面PAG∥平面BDE;
(2)求二面角D-BE-C得余弦值的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{(x+1)(x-2)}$與函數(shù)g(x)=$\frac{1}{{\sqrt{{x^2}-(2a+1)x+a(a+1)}}}$,若它們的定義域分別為集合A,B,
(1)求集合A、B;
(2)若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}滿足a1=2,an≠1,(an+1-an)g(an)+f(an)=0.
(1)求證:an+1=$\frac{3}{4}$an+$\frac{1}{4}$;
(2)求數(shù)列{an-1}的通項公式;
(3)若bn=3f(an)-g(an+1),求{bn}中的最大項.

查看答案和解析>>

同步練習(xí)冊答案