如圖所示,F(xiàn)是拋物線(xiàn)x2=2py(p>0)的焦點(diǎn),點(diǎn)R(1,4)為拋物線(xiàn)內(nèi)一定點(diǎn),點(diǎn)Q為拋物線(xiàn)上一動(dòng)點(diǎn),|QR|+|QF|的最小值為5.
(1)求拋物線(xiàn)方程;
(2)已知過(guò)點(diǎn)P(0,-1)的直線(xiàn)l與拋物線(xiàn)x2=2py(p>0)相交于A(yíng)(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是該拋物線(xiàn)在A(yíng)、B兩點(diǎn)處的切線(xiàn),M、N分別是l1、l2與直線(xiàn)y=-1的交點(diǎn).求直線(xiàn)l的斜率的取值范圍并證明|PM|=|PN|.
分析:(1)利用拋物線(xiàn)的定義,結(jié)合|QR|+|QF|的最小值為5,建立方程,即可求得拋物線(xiàn)的方程;
(2)設(shè)直線(xiàn)l的方程與拋物線(xiàn)方程聯(lián)立,確定k的范圍,求出拋物線(xiàn)在A(yíng)、B處的切線(xiàn)方程,令y=-1,可得M、N的橫坐標(biāo),利用韋達(dá)定理,可得橫坐標(biāo)互為相反數(shù),從而可得結(jié)論.
解答:(1)解:設(shè)拋物線(xiàn)的準(zhǔn)線(xiàn)為QQ'⊥l于Q',過(guò)Q作QQ'⊥l于Q',過(guò)R作RR'⊥l于R',由拋物線(xiàn)定義知|QF|=|QQ'|,…(1分)
∴|QR|+|QF|=|QR|+|QQ'|≥|RR'|(折線(xiàn)段大于垂線(xiàn)段),當(dāng)且僅當(dāng)R、Q、R'三點(diǎn)共線(xiàn)取等號(hào).…(3分)
由題意知|RR′|=5,
4+
p
2
=5
,
∴p=2,故拋物線(xiàn)的方程為:x2=4y…(5分)
(2)證明:由已知條件可知直線(xiàn)l的斜率存在且不為0,設(shè)直線(xiàn)l:y=kx-1,…(6分)
y=kx-1
x2=4y
,∴x2-4ky+4=0,…①…(7分)
依題意,有△=16k2-16>0,∴k<-1或k>1;…(8分)
由x2=4y,∴y=
1
4
x2
,∴y′=
1
2
x
,…(9分)
所以?huà)佄锞(xiàn)在A(yíng)處的切線(xiàn)l1的方程為:y-
1
4
x
2
1
=
1
2
x1(x-x1)
,即y=
1
2
x1x-
1
4
x
2
1
.…(10分)
令y=-1,得xM=
x
2
1
-4
2x1
.…(11分)     
同理,得xN=
x
2
2
-4
2x2
.…(12分)
注意到x1、x2是方程①的兩個(gè)實(shí)根,故x1x2=4,即x2=
4
x1
,…(13分)
從而有xN=
x
2
2
-4
2x2
=
(
4
x1
)
2
-4
8
x1
=
4-
x
2
1
2x1
=-xM
,
因此,|PM|=|PN|.…(14分)
點(diǎn)評(píng):本題考查拋物線(xiàn)的定義,考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,F(xiàn)是拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),點(diǎn)A(4,2)為拋物線(xiàn)內(nèi)一定點(diǎn),點(diǎn)P為拋物線(xiàn)上一動(dòng)點(diǎn),|PA|+|PF|的最小值為8.
(1)求拋物線(xiàn)方程;
(2)若O為坐標(biāo)原點(diǎn),問(wèn)是否存在點(diǎn)M,使過(guò)點(diǎn)M的動(dòng)直線(xiàn)與拋物線(xiàn)交于B,C兩點(diǎn),且以BC為直徑的圓恰過(guò)坐標(biāo)原點(diǎn),若存在,求出動(dòng)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年重慶八中高三(上)第五次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖所示,F(xiàn)是拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),點(diǎn)A(4,2)為拋物線(xiàn)內(nèi)一定點(diǎn),點(diǎn)P為拋物線(xiàn)上一動(dòng)點(diǎn),|PA|+|PF|的最小值為8.
(1)求拋物線(xiàn)方程;
(2)若O為坐標(biāo)原點(diǎn),問(wèn)是否存在點(diǎn)M,使過(guò)點(diǎn)M的動(dòng)直線(xiàn)與拋物線(xiàn)交于B,C兩點(diǎn),且以BC為直徑的圓恰過(guò)坐標(biāo)原點(diǎn),若存在,求出動(dòng)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年廣東省實(shí)驗(yàn)中學(xué)考前熱身訓(xùn)練數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,F(xiàn)是拋物線(xiàn)x2=2py(p>0)的焦點(diǎn),點(diǎn)R(1,4)為拋物線(xiàn)內(nèi)一定點(diǎn),點(diǎn)Q為拋物線(xiàn)上一動(dòng)點(diǎn),|QR|+|QF|的最小值為5.
(1)求拋物線(xiàn)方程;
(2)已知過(guò)點(diǎn)P(0,-1)的直線(xiàn)l與拋物線(xiàn)x2=2py(p>0)相交于A(yíng)(x1,y1)、B(x2,y2)兩點(diǎn),l1、l2分別是該拋物線(xiàn)在A(yíng)、B兩點(diǎn)處的切線(xiàn),M、N分別是l1、l2與直線(xiàn)y=-1的交點(diǎn).求直線(xiàn)l的斜率的取值范圍并證明|PM|=|PN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高考數(shù)學(xué)模擬試卷1(文科)(解析版) 題型:解答題

如圖所示,F(xiàn)是拋物線(xiàn)y2=2px(p>0)的焦點(diǎn),點(diǎn)A(4,2)為拋物線(xiàn)內(nèi)一定點(diǎn),點(diǎn)P為拋物線(xiàn)上一動(dòng)點(diǎn),|PA|+|PF|的最小值為8.
(1)求拋物線(xiàn)方程;
(2)若O為坐標(biāo)原點(diǎn),問(wèn)是否存在點(diǎn)M,使過(guò)點(diǎn)M的動(dòng)直線(xiàn)與拋物線(xiàn)交于B,C兩點(diǎn),且以BC為直徑的圓恰過(guò)坐標(biāo)原點(diǎn),若存在,求出動(dòng)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案