長方體的長、寬、高分別為4,2,2,其頂點都在一個球面上,則該球的表面積為(  )
A、12πB、24π
C、48πD、96π
考點:球的體積和表面積
專題:計算題,空間位置關(guān)系與距離
分析:長方體的對角線的長度,就是外接球的直徑,求出直徑即可求出表面積.
解答:解:長方體的對角線的長度,就是外接球的直徑,所以2r=
42+22+22
=2
6

所以這個球的表面積:4πr2=24π.
故選:B.
點評:本題是基礎(chǔ)題,考查長方體的外接球的應用,球的表面積的求法,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

《算數(shù)書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學典籍,其中記載有求“囷蓋”的術(shù):置如其周,令相乘也,又以高乘之,三十六成一,該術(shù)相當于給出了由圓錐的底面周長L與高h,計算其體積V的近似公式V≈
1
36
L2h,它實際上是將圓錐體積公式中的圓周率π近似取為3,那么,近似公式V≈
2
75
L2h相當于將圓錐體積公式中的π近似取為( 。
A、
22
7
B、
25
8
C、
157
50
D、
355
113

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

回歸分析中,下列關(guān)于相關(guān)系數(shù)R2的描敘:①R2越大,模型的模擬效果越好,②R2越大,殘差平方和越大,③R2越大,解釋變量對預報變量變化的貢獻越大;其中錯誤的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=2
3
,點A、B、C、D在球O上,球O與BA1的另一個交點為E,與CD1的另一個交點為F,AE⊥BA1,則球O表面積為( 。
A、6πB、8π
C、12πD、16π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐S-ABC中,M、N分別是棱SC、BC的中點,且MN⊥AM,若AB=2
2
,則此正三棱錐外接球的體積是(  )
A、12π
B、4
3
π
C、
4
3
3
π
D、12
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四棱錐P-ABCD的所有側(cè)棱長都為
3
,底面ABCD是邊長2的正方形,則四棱錐P-ABCD的外接球的表面積(  )
A、3πB、8πC、9πD、36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個正四面體的棱長為2,則它的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列直線中傾斜角為45°的是( 。
A、y=xB、y=-x
C、x=1D、y=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)f(x)=cos2x-
3
sin2x的圖象向右平移m(m>0)個單位,所得的圖象關(guān)于坐標原點對稱,則m的最小值是( 。
A、
π
12
B、
π
6
C、
12
D、
6

查看答案和解析>>

同步練習冊答案