分析 將問題轉(zhuǎn)化為m2-2tm+1≤0對?m∈[1,2]恒成立,得不等式組,解出即可.
解答 解:f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$=$\frac{x-1}{{x}^{2}}$,
令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)遞減,在(1,+∞)遞增,
∴f(x)的極小值即最小值是f(1)=1;
(2)由(1)可知f(x)在(1,+∞)上單調(diào)遞增,
所以m2-2tm+2≤f(x)min=f(1)=1即m2-2tm+1≤0對?m∈[1,2]恒成立,
所以$\left\{\begin{array}{l}{1-2t+1≤0}\\{4-4t+1≤0}\end{array}\right.$,解得t≥$\frac{5}{4}$,
故答案為:[$\frac{5}{4}$,+∞).
點評 本題考查了函數(shù)的單調(diào)性,函數(shù)的極值問題,考查了導(dǎo)數(shù)的應(yīng)用,不等式恒成立問題,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若l⊥β,則 α⊥β | B. | 若α⊥β,則l⊥m | C. | 若l∥β,則α∥β | D. | 若α∥β,則l∥m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com