已知f(x)=
1
x
cosx,則f(π)+f′(
π
2
)=( 。
A、-
2
π
B、
3
π
C、-
1
π
D、-
3
π
考點:導(dǎo)數(shù)的運算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)的運算法則,求導(dǎo),然后導(dǎo)入值計算即可
解答: 解:f(x)=
1
x
cosx,則f′(x)=-
cosx
x2
-
sinx
x
,
∴f(π)+f′(
π
2
)=
1
π
cosπ-
cos
π
2
(
π
2
)2
-
sin
π
2
π
2
=-
1
π
-
2
π
=-
3
π
,
故選:D
點評:本題考查了導(dǎo)數(shù)的運算法則,屬于基礎(chǔ)題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是△BCD所在平面外一點,M、N分別是△ABC和△ACD的重心,求證:MN∥平面BCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2-x,x≤0
4-x2
,0<x≤2
,則
2
-2
f(x)dx的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|lgx|(0<x≤10)
-
1
2
x+6(x>10)
若a,b,c互不相等,且f(a)=f(b)=f(c),則abc的取值范圍是(  )
A、( 1,10 )
B、( 5,6 )
C、( 10,12 )
D、( 20,24)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)為奇函數(shù),且滿足f(x+4)=f(x),當x∈[0,1]時,f(x)=2x-1
(1)求f(x)在[-1,0)上的解析式
(2)求f(log 
1
2
24)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點AB=AF=BC=2分別是正方體GB=GF的棱EG∥的中點,點ABC分別在
線段E-BF-A上.以G為頂點的三棱錐BF⊥的俯視圖不可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,且S10=12,則a5+a6=(  )
A、
12
5
B、12
C、6
D、
6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=4,∠ABC=30°,D是邊BC上的一點,且
AD
AB
=
AD
AC
,則
AD
AB
的值等于(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an},a1=1,前n項和為Sn,若Sn+1=3Sn(n∈N*),則數(shù)列{an}的第5項是( 。
A、81
B、
1
81
C、54
D、162

查看答案和解析>>

同步練習(xí)冊答案