已知f(x)是R上最小正周期為2的周期函數(shù),且當0≤x<2時,f(x)=x3-x,則函數(shù)y=f(x)的圖象在區(qū)間[0,6]上與x軸的交點的個數(shù)為( ).
A.6 B.7 C.8 D.9
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-7練習卷(解析版) 題型:選擇題
已知不等式|x+2|+|x|≤a的解集不是空集,則實數(shù)a的取值范圍是( ).
A.(-∞,2) B.(-∞,2]
C.(2,+∞) D.[2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-4練習卷(解析版) 題型:填空題
設α是第二象限角,tan α=-,且sin<cos,則cos=______.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-3練習卷(解析版) 題型:選擇題
設a= ,b= ,c=,則下列關系式成立的是( ).
A. << B. < <
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-2練習卷(解析版) 題型:填空題
已知定義在R上的偶函數(shù)滿足:f(x+4)=f(x)+f(2),且當x∈[0,2]時,y=f(x)單調遞減,給出以下四個命題:
①f(2)=0;
②x=-4為函數(shù)y=f(x)圖象的一條對稱軸;
③函數(shù)y=f(x)在[8,10]上單調遞增;
④若方程f(x)=m在[-6,-2]上的兩根為x1,x2則x1+x2=-8.以上命題中所有正確命題的序號為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-2練習卷(解析版) 題型:選擇題
已知冪函數(shù)y=f(x)的圖象過點,則log2f(2)的值為( ).
A. B.- C.2 D.-2
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-1練習卷(解析版) 題型:填空題
“M>N”是“l(fā)og2M>log2N”成立的______條件(從“充要”、“充分不必要”、“必要不充分”中選擇一個正確的填寫).
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-11練習卷(解析版) 題型:選擇題
若實數(shù)a,b滿足a2+b2≤1,則關于x的方程x2-2x+a+b=0有實數(shù)根的概率是( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題能力測評7練習卷(解析版) 題型:解答題
受轎車在保修期內維修費等因素的影響,企業(yè)生產每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關.某轎車制造廠生產甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:
品牌 | 甲 | 乙 | |||
首次出現(xiàn)故 障時間x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轎車數(shù)量(輛) | 2 | 3 | 45 | 5 | 45 |
每輛利潤 (萬元) | 1 | 2 | 3 | 1.8 | 2.9 |
將頻率視為概率,解答下列問題:
(1)從該廠生產的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內的概率.
(2)若該廠生產的轎車均能售出,記生產一輛甲品牌轎車的利潤為X1,生產一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列.
(3)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產其中一種品牌的轎車.若從經濟效益的角度考慮,你認為應生產哪種品牌的轎車?說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com