(14分)設圓滿足:①截y軸所得弦長為2;②被x軸分成兩段圓弧,其弧長的比為3∶1,在滿足條件①、②的所有圓中,求圓心到直線l:x-2y=0的距離最小的圓的方程。

 

【答案】

解法一  設圓的圓心為P(a,b),半徑為r,則點P到x軸,y軸的距離分別為|b|,|a|。由題設知圓P截x軸所得劣弧所對的圓心角為90°,∴圓P截x軸所得的弦長為r,故r2=2b2。又圓P截y軸所得的的弦長為2,所以有r2=a2+1。從而得2b2-a2=1。又點P(a,b)到直線x-2y=0的距離為d=,所以5d2=|a-2b|2=a2+4b2-4ab≥a2+4b2 -2(a2+b2)=2b2-a2=1,當且僅當a=b時,上式等號成立,從而要使d取得最小值,則應有,解此方程組得。又由r2=2b2知r=。于是,所求圓的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2。

解法二  同解法一得d=,∴a-2b=±d,得a2=4b2±bd+5d2      ①

將a2=2b2-1代入①式,整理得2b2±4bd+5d2+1=0  ②  把它看作b的二次方程,由于方程有實根,故判別式非負,即△=8(5d2-1)≥0,得5d2≥1。所以5d2有最小值1,從而d有最小值。將其代入②式得2b2±4b+2=0,解得b=±1。將b=±1代入r2=2b2得r2=2,由r2=a2+1得a=±1。綜上a=±1,b=±1,r2=2。由|a-2b|=1知a,b同號。于是,所求圓的方程是(x-1)2+(y-1)2=2或(x+1)2+(y+1)2=2。

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設b>0,橢圓方程為,拋物線方程為。如圖所示,過點F(0,b + 2)作x軸的平行線,與拋物線在第一象限的交點為G。已知拋物線在點G的切線經(jīng)過橢圓的右焦點F1。

(1)求滿足條件的橢圓方程和拋物線方程;

(2)點G、所在的直線截橢圓的右下區(qū)域為D,

若圓C:與區(qū)域D有公共點,求m的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年山東省高三上學期期末考試數(shù)學理卷 題型:解答題

(本題滿分14分)

設橢圓的左、右焦點分別為,上頂點為,在軸負半軸上有一點,滿足,且.

   (1)求橢圓的離心率;

   (2)若過三點的圓恰好與直線相切,求橢圓的方程;

   (3)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由。  

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年山東省高一下學期期中考試數(shù)學試卷 題型:解答題

(本小題滿分14分)

設圓滿足條件:(1)截y軸所得的弦長為2;(2)被x軸分成兩段弧,其弧長的比為3︰1;(3)圓心到直線的距離為.求這個圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年廣州市七區(qū)聯(lián)考高二數(shù)學(理)下學期期末監(jiān)測 題型:解答題

(本小題滿分14分)

設動圓過點,且與定圓內(nèi)切,動圓圓心的軌跡記為曲線,點的坐標為

(1)求曲線的方程;

(2)若點為曲線上任意一點,求點和點的距離的最大值

(3)當時,在(2)的條件下,設是坐標原點,是曲線上橫坐標為的點,記△的面積為,以為邊長的正方形的面積為.若正數(shù)滿足,問是否存在最小值?若存在,求出此最小值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設圓滿足條件:(1)截y軸所得的弦長為2;(2)被x軸分成兩段弧,其弧長的比為3︰1;(3)圓心到直線的距離為.求這個圓的方程.

  

查看答案和解析>>

同步練習冊答案