已知a,b,c∈R+,且a+b+c=1.證明:
(Ⅰ)a2+b2+c2
1
3
;
(Ⅱ)
a2
b
+
b2
c
+
c2
a
≥1.
考點(diǎn):不等式的證明
專題:不等式
分析:(Ⅰ)由題意得,1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≤3(a2+b2+c2),結(jié)論得證.
(Ⅱ)由題意得,
a2
b
+b≥2a,
b2
c
+c≥2b,
c2
a
+a≥2c,得到
a2
b
+
b2
c
+
c2
a
+a+b+c≥2(a+b+c),結(jié)論得證.
解答: 證明(Ⅰ)∵a,b,c∈R+,且a+b+c=1,∴1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≤3(a2+b2+c2),
∴a2+b2+c2
1
3
,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.    
(Ⅱ)∵
a2
b
+b≥2a,
b2
c
+c≥2b,
c2
a
+a≥2c,
a2
b
+
b2
c
+
c2
a
+a+b+c≥2(a+b+c),
a2
b
+
b2
c
+
c2
a
≥a+b+c=1,
a2
b
+
b2
c
+
c2
a
≥1
點(diǎn)評(píng):本題考查用比較法證明不等式,基本不等式的應(yīng)用,將式子變形是證明的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|ax+5≤3},B={x|x≥1}.
(1)若A∪B=B,求實(shí)數(shù)a的取值范圍;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a使得A∪B=A∩B?若存在,求出a的值,若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)對(duì)應(yīng),其中能構(gòu)成映射的是(  )
A、(1)(2)
B、(1)(4)
C、(1)(3)(4)
D、(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=a-x2+4x(a>1)的單調(diào)遞增區(qū)間是( 。
A、(2,+∞)
B、(-2,+∞)
C、(-∞,-2)
D、(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2014年國(guó)慶長(zhǎng)假期間,各旅游景區(qū)人數(shù)發(fā)生“井噴”現(xiàn)象,給旅游區(qū)的管理提出了嚴(yán)峻的考驗(yàn),國(guó)慶后,某旅游區(qū)管理部門對(duì)該區(qū)景點(diǎn)進(jìn)一步改造升級(jí),提高旅游增加值,經(jīng)過(guò)市場(chǎng)調(diào)查,旅游增加值y萬(wàn)元與投入x萬(wàn)元之間滿足:y=
51
50
x-ax2-ln
x
10
,x∈(1,t],當(dāng)x=10時(shí),y=9.2.
(1)求y=f(x)的解析式;
(2)求旅游增加值y取得最大值時(shí)對(duì)應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,橢圓上任意一點(diǎn)到橢圓的兩個(gè)焦點(diǎn)的距離之和為4,設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B,點(diǎn)A的坐標(biāo)為(-a,0).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若|AB|=
4
2
5
,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商品進(jìn)貨單價(jià)為10元,按20元一個(gè)銷售能賣20個(gè);若銷售單位每漲價(jià)1元,銷售量就減少1個(gè).要獲得最大利潤(rùn)時(shí),此商品的售價(jià)應(yīng)該為每個(gè)
 
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(
2
,0),右頂點(diǎn)為(1,0).
(1)求雙曲線C的方程;
(2)若直線l:y=k(x-1)(k>0)與雙曲線C有兩個(gè)不同的交點(diǎn)A和B,且
OA
OB
>3(其中O為原點(diǎn)),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下三組數(shù)的大小比較結(jié)果:(1)20.3>0.32>log20.3,(2)30.4>40.3,(3)(-
2
3
 
1
3
<-(
1
3
 
2
3
,
其中結(jié)果正確的組數(shù)為( 。
A、3B、2C、1D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案