設(shè)集合A為方程-x2-2x+8=0的解集,集合B為不等式ax-1≤0的解集.
(1)當(dāng)a=1時(shí),求A∩B;
(2)若A⊆B,求實(shí)數(shù)a的取值范圍.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用,一元二次不等式的解法
專(zhuān)題:集合
分析:(1)通過(guò)解方程求出集合A,將a=1代入ax-1≤0,求出集合B,從而求出A∩B;(2)由題意得不等式組,解出即可.
解答: 解:(1)由-x2-2x+8=0,解得A={-4,2},
a=1時(shí),B=(-∞,1],
∴A∩B={-4};
(2)∵A⊆B,
-4a-1≤0
2a-1≤0

解得:-
1
4
≤a≤
1
2
點(diǎn)評(píng):本題考查了集合的包含關(guān)系,考查了不等式的解法,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=lg(x+
x2+a
)是定義在R上奇函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:x-y-m=0經(jīng)過(guò)拋物線C:y2=2px(p>0)的焦點(diǎn),l與C交與A,B兩點(diǎn),若|AB|=6.則p的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,如果菱形OABC的邊長(zhǎng)為2,點(diǎn)B在y軸上,則菱形內(nèi)(不含邊界)的整點(diǎn)(橫縱坐標(biāo)都是整數(shù)的點(diǎn))個(gè)數(shù)的取值集合是( 。
A、{1,3}
B、{0,1,3}
C、{0,1,3,4}
D、{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)是R上的偶函數(shù),且f(x)在(-∞,0]上是增函數(shù),若f(a)≥f(2),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(a+x)-ln(a-x)(a>0).
(Ⅰ)曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,求a的值;
(Ⅱ)當(dāng)x≥0時(shí),f(x)≥2x+
2x3
3
,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦距為2c(c>0),以O(shè)為圓心,a為半徑作圓,過(guò)點(diǎn)(
a2
c
,0)作圓的兩條切線互相垂直,則離心率e為( 。
A、
2
2
B、
1
2
C、
3
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BE∥AF,BC∥AD,BC=
1
2
AD,BE=
1
2
AF,G、H分別為FA、FD的中點(diǎn).
(1)在證明:四邊形BCHG是平行四邊形.
(2)C、D、F、E四點(diǎn)是否共面?若共面,請(qǐng)證明,若不共面,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲乙兩同學(xué)在高二年級(jí)的6次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(滿分100分)如圖莖葉圖所示,則下列說(shuō)法正確的是( 。
A、甲乙同學(xué)的平均成績(jī)相同,但是甲同學(xué)的成績(jī)比乙穩(wěn)定
B、甲乙同學(xué)的平均成績(jī)相同,但是乙同學(xué)的成績(jī)比甲穩(wěn)定
C、甲同學(xué)的平均成績(jī)比乙同學(xué)好,但是乙同學(xué)的成績(jī)比甲穩(wěn)定
D、乙同學(xué)的平均成績(jī)比甲同學(xué)好,但是甲同學(xué)的成績(jī)比乙穩(wěn)定

查看答案和解析>>

同步練習(xí)冊(cè)答案