如圖所示,四棱柱ABCD-A1B1C1D1中,E、F分別是AB1、BC1的中點(diǎn),下列結(jié)論中,正確的是( 。
A、EF⊥BB1
B、EF∥平面ACC1A1
C、EF⊥BD
D、EF⊥平面BCC1B1
考點(diǎn):直線與平面平行的判定,直線與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:在B中:連接A1B,由平行四邊形的性質(zhì)得EF∥A1C1,由此能推導(dǎo)出EF∥平面ACC1A1;在A中:由正方體的幾何特征得B1B⊥面A1B1C1D1,由A1C1?面A1B1C1D1,得B1B⊥A1C1,由此能求出EF⊥BB1;在C中:由正方形對(duì)角線互相垂直可得AC⊥BD,從而得到EF與BD垂直;在D中:由EF⊥BB1,BB1∩BC=B,得EF與BC不垂直,從而EF⊥平面BCC1B1不成立.
解答: 解:在B中:連接A1B,由平行四邊形的性質(zhì)得A1B過E點(diǎn),
且E為A1B的中點(diǎn),則EF∥A1C1
又A1C1?平面ACC1A1,EF?平面ACC1A1,∴EF∥平面ACC1A1,故B正確;
在A中:由正方體的幾何特征可得B1B⊥面A1B1C1D1
又由A1C1?面A1B1C1D1,可得B1B⊥A1C1,
由EF∥平面ACC1A1可得EF⊥BB1,故A正確;
在C中:由正方形對(duì)角線互相垂直可得AC⊥BD,
∵EF∥A1C1,AC∥A1C1,∴EF∥AC,則EF與BD垂直,故C正確;
在D中:∵EF⊥BB1,BB1∩BC=B,∴EF與BC不垂直,
∴EF⊥平面BCC1B1不成立,故D錯(cuò)誤.
故選:D.
點(diǎn)評(píng):本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用,考查學(xué)生的空間想象能力、邏輯推理能力和運(yùn)算求解能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanβ=
1
2
,β∈(π,2π),求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=k(x-2)+6與雙曲線x2-y2=1恒有公共點(diǎn)則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O,A,B是平面上的三個(gè)點(diǎn),直線AB上有一點(diǎn)C,滿足2
AC
+
CB
=0,若
OA
=a,
OB
=b,則
OC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3-|x-3|(x≤6)
1
2
f(x-6)(x>6)
,則函數(shù)g(x)=xf(x)-9的零點(diǎn)個(gè)數(shù)是( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
4
+
y2
3
=1,F(xiàn)
為右焦點(diǎn),A為長(zhǎng)軸的左端點(diǎn),P點(diǎn)為該橢圓上的動(dòng)點(diǎn),則能夠使
PA
PF
=0
的P點(diǎn)的個(gè)數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知斜三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=a,點(diǎn)A1在底面ABC上的射影恰為AC的中點(diǎn)D,A1D∩AC1=M,BA1⊥AC1
(Ⅰ)試問在線段AB是否存在一點(diǎn)N,使得MN∥平面BB1C1C,若存在,指出N點(diǎn)位置,并證明你的結(jié)論;若不存在,說明理由;
(Ⅱ)求點(diǎn)C1到平面A1ABB1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角梯形ABCD中,AD∥BC,AD=AB=
1
2
BC=2,∠ABC=90°,△PAB是等邊三角形,平面PAB⊥平面ABCD.
(1)求二面角P-CD-B的余弦值;
(2)求B到平面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直二面角D-AB-E中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE=EB,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥平面BCE;
(2)求BF與平面ABCD所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案