精英家教網 > 高中數學 > 題目詳情
3.代數式sin($\frac{π}{2}$+$\frac{π}{3}$)+cos($\frac{π}{2}$-$\frac{π}{6}$)的值為( 。
A.-1B.0C.1D.$\frac{\sqrt{3}}{2}$

分析 原式利用誘導公式化簡,再利用特殊角的三角函數值計算即可得答案.

解答 解:sin($\frac{π}{2}$+$\frac{π}{3}$)+cos($\frac{π}{2}$-$\frac{π}{6}$)=$cos\frac{π}{3}+sin\frac{π}{6}=\frac{1}{2}+\frac{1}{2}=1$.
故選:C.

點評 本題考查了運用誘導公式化簡求值,熟練掌握誘導公式是解本題的關鍵,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

13.函數y=ax(a>0且a≠1)的圖象均過定點(0,1).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$與$\overrightarrow$共線,$\overrightarrow$=(1,-2),$\overrightarrow{a}$•$\overrightarrow$=-10
(Ⅰ)求向量$\overrightarrow{a}$的坐標;
(Ⅱ)若$\overrightarrow{c}$=(6,-7),求|$\overrightarrow{a}$+$\overrightarrow{c}$|

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

11.若函數y=cos(ωx-$\frac{π}{3}$)(ω∈N*)圖象的一條對稱軸是x=$\frac{π}{6}$,則ω的最小值為2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,在平面直角坐標系xOy中,以O為角的頂點,x軸正半軸為始邊的角α、β的終邊分別與單位圓交于點A,B,若點A的橫坐標是$\frac{4}{5}$,點B的縱坐標是$\frac{\sqrt{3}}{2}$.
(1)求cos(α-β)的值;
(2)求$\overrightarrow{OA}$與$\overrightarrow{OB}$夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.已知角α終邊上有一點P(x,1),且cosα=-$\frac{1}{2}$,則tanα=-$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知A,B為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的公共頂點,P,Q分別為雙曲線和橢圓上不同于A,B的動點,且有$\overrightarrow{AP}$+$\overrightarrow{BP}$=λ($\overrightarrow{AQ}$+$\overrightarrow{BQ}$)(λ∈R),設AP,BP,AQ,BQ的斜率分別為k1,k2,k3,k4,且m=
(k1,k2),n=(k2,k1) 
(1)求證:m⊥n;
(2)求$\frac{{k}_{2}}{{k}_{1}}$+$\frac{{k}_{1}}{{k}_{2}}$+$\frac{{k}_{3}}{{k}_{4}}$+$\frac{{k}_{4}}{{k}_{3}}$的值;
(3)設F2′,F(xiàn)2分別為雙曲線和橢圓的右焦點,且PF2′∥QF2,試判斷k12+k22+k32+k42是否為定值?若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.如圖,已知橢圓$\frac{x^2}{a^2}+{y^2}=1(a>1)$的長軸長是短軸長的2倍,右焦點為F,點B,C分別是該橢圓的上、下頂點,點P是直線l:y=-2上的一個動點(與y軸交點除外),直線PC交橢圓于另一點M,記直線BM,BP的斜率分別為k1,k2
(1)當直線PM過點F時,求$\overrightarrow{PB}•\overrightarrow{PM}$的值;
(2)求|k1|+|k2|的最小值,并確定此時直線PM的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.以下四個關于圓錐曲線的命題:
①在直角坐標平面內,到點(-1,2)和到直線2x+3y-4=0距離相等的點的軌跡是拋物線;
②設F1、F2為兩個定點,k為非零常數,若|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=k,則P點的軌跡為雙曲線;
③方程4x2-8x+3=0的兩根可以分別作為橢圓和雙曲線的離心率;
④過單位圓O上一定點A作圓的動弦AB,O為坐標原點,若$\overrightarrow{OP}$=($\overrightarrow{OA}$+$\overrightarrow{OB}$),則動點P的軌跡為橢圓.
其中真命題的序號為③.(寫出所有真命題的序號)

查看答案和解析>>

同步練習冊答案