【題目】已知圓 和點,動圓經(jīng)過點且與圓相切,圓心的軌跡為曲線

(1)求曲線的方程;

(2)點是曲線軸正半軸的交點,點, 在曲線上,若直線, 的斜率分別是, ,滿足,求面積的最大值.

【答案】(1);(2).

【解析】試題分析:(1)分析條件可得圓心滿足條件>,從而可得曲線EM,N為焦點,長軸長為的橢圓,可得橢圓的方程;(2)設直線的方程為,代入橢圓方程消去x整理得到關(guān)于y的方程,進一步可得

,由可求得,從而,從而

可得 ,從而可得三角形面積的最大值。

試題解析:

1)由題意得圓的圓心為,半徑為

在圓內(nèi),因為動圓經(jīng)過點且與圓相切,所以動圓與圓內(nèi)切。

設動圓半徑為,則 .

因為動圓經(jīng)過點,所以, >,

所以曲線EMN為焦點,長軸長為的橢圓.

設橢圓的方程為

,

,

∴曲線的方程為

(2)當直線的斜率為0時,不合題意;

設直線的方程為,

消去x整理得

,

由條件得點A坐標為(1,0),

=.,

解得,

故直線BC過定點(2,0),

,解得,

,當且僅當時取等號。

綜上面積的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,⊙O與⊙O′相交于A、B兩點,過A引直線CD,EF分別交兩圓于點C、D、E、F,ECDF的延長線相交于點P,求證:∠P+∠CBD=180°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的左右焦點分別為,,點滿足

() 求橢圓的離心率

() 設直線與橢圓相交于兩點,若直線與圓相交于兩點,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在梯形BCDE中,BC∥DE,BA⊥DE,且EA=DA=AB=2CB=2,沿AB將四邊形ABCD折起,使得平面ABCD與平面ABE垂直,M為CE的中點.
(1)求證:AM⊥BE;
(2)求三棱錐C﹣BED的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是數(shù)列的前項和, .

(1)求證:數(shù)列是等差數(shù)列,并求的通項;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側(cè)棱平面, 為等腰直角三角形, , 分別是, 的中點,且

(Ⅰ)求證: 平面

(Ⅱ)若,求點到平面的距離 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】車間計劃每天生產(chǎn)卡車模型、賽車模型、小汽車模型這三種玩具共100個,已知生產(chǎn)一個卡車模型需5分鐘,生產(chǎn)一個賽車模型需7分鐘,生產(chǎn)個小汽車模型需4分鐘且生產(chǎn)一個卡車模型可獲利潤8元,生產(chǎn)一個賽車模型可獲利潤9元,生產(chǎn)一個小汽車模型可獲利潤6元.若總生產(chǎn)時間不超過10小時,該公司合理分配生產(chǎn)任務使每天的利潤最大,則最大利潤是______________元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公差大于零的等差數(shù)列的前項和為,且,

(1)求數(shù)列的通項公式;

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)的值.

(3)設,為數(shù)列的前項和,是否存在正整數(shù),使得任意的成立?若存在,求出的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在區(qū)間上單調(diào)遞增,求的取值范圍;

(2)若函數(shù)的圖象與直線相切,求的值.

查看答案和解析>>

同步練習冊答案