8.已知$\overrightarrow{a}$為單位向量,$\overrightarrow$=(0,2),且$\overrightarrow{a}$$•\overrightarrow$=1,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

分析 根據(jù)條件可知,$|\overrightarrow{a}|=1,|\overrightarrow|=2$,從而根據(jù)$\overrightarrow{a}•\overrightarrow=1$即可求出$cos<\overrightarrow{a},\overrightarrow>$的值,從而得出向量$\overrightarrow{a}$與$\overrightarrow$的夾角.

解答 解:$|\overrightarrow{a}|=1,|\overrightarrow|=2$;
∴$\overrightarrow{a}•\overrightarrow=1•2cos<\overrightarrow{a},\overrightarrow>=1$;
∴$cos<\overrightarrow{a},\overrightarrow>=\frac{1}{2}$;
∴$\overrightarrow{a},\overrightarrow$夾角為$\frac{π}{3}$.
故選C.

點評 考查單位向量的概念,向量數(shù)量積的計算公式,以及向量夾角的概念.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.在平面直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=2cost\\ y=sint\end{array}\right.$(t為參數(shù)).在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=2sinθ.
(Ⅰ)求曲線C1和C2的直角坐標方程,并分別指出其曲線類型;
(Ⅱ)試判斷:曲線C1和C2是否有公共點?如果有,說明公共點的個數(shù);如果沒有,請說明理由;
(Ⅲ)設A(a,b)是曲線C1上任意一點,請直接寫出a+2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知f(x)=ex-ax2,g(x)是f(x)的導函數(shù).
(Ⅰ)求g(x)的極值;
(Ⅱ)若f(x)≥x+(1-x)•ex在x≥0時恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.為了得到函數(shù)$y=2cos({2x-\frac{π}{6}})$的圖象,只需將函數(shù)y=2sin2x圖象上所有的點( 。
A.向左平移$\frac{π}{12}$個單位長度B.向右平移$\frac{π}{12}$個單位長度
C.向左平移$\frac{π}{6}$個單位長度D.向右平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距為4,左、右焦點分別為F1、F2,且C1與拋物線C2:y2=x的交點所在的直線經(jīng)過F2
(Ⅰ)求橢圓C1的方程;
(Ⅱ)過F1的直線l與C1交于A,B兩點,與拋物線C2無公共點,求△ABF2的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知a1=$\frac{1}{2}$a2≠0,數(shù)列{an}的前n項和為Sn,且Sn+1=3Sn-2Sn-1(n≥2),設bn=$\frac{{S}_{n}}{{a}_{n}}$(n∈N*).
(1)求數(shù)列{bn}的通項公式;
(2)設cn=nbn+$\frac{n+1}{{2}^{n}}$(n∈N*),數(shù)列{cn}的前n項和為Tn,證明:T10>109.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.我國古代數(shù)學名著《九章算術(shù)》中有:“今有羨除,下廣六尺,上廣一丈,深三尺,末廣八尺,無深,袤七尺,問積幾何?”羨除即三個面是等腰梯形、兩側(cè)面是三角形的五面梯形ABCDEF隧道(如圖),其中,等腰梯形ABCD的下、上底邊長分別為6尺和1丈,高為3尺,平面ABCD⊥平面ABFE,等腰梯形ABFE的上底邊長為8尺,高為7尺,則得到此“羨除”的容積( 。
A.約84立方尺B.約為105立方尺C.恰為84立方尺D.恰為105立方尺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知圓O:x2+y2=1交x軸正半軸于點A,在圓O上隨機取一點B,則使$|{\overrightarrow{OA}-\overrightarrow{OB}}|≤1$成立的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.集合A={x|3x+2>0},B={x|$\frac{x+1}{x-3}$<0},則A∩B=( 。
A.(-1,+∞)B.(-1,-$\frac{2}{3}$)C.(3,+∞)D.(-$\frac{2}{3}$,3)

查看答案和解析>>

同步練習冊答案