10.已知等比數(shù)列{an}的公比為q>0,a2+a3=12,且a4=16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=log2an,求數(shù)列$\left\{{\frac{b_n}{a_n}}\right\}$的前n項(xiàng)和Tn

分析 (1)由等比數(shù)列的通項(xiàng)公式列出方程組,求出a1、q,即可求出通項(xiàng)公式;
(2)由(1)和對(duì)數(shù)的運(yùn)算性質(zhì)化簡(jiǎn)bn,利用錯(cuò)位相減法求出數(shù)列$\left\{{\frac{b_n}{a_n}}\right\}$的前n項(xiàng)和Tn

解答 解:(1)由題意得$\left\{\begin{array}{l}{a_1}q+{a_1}{q^2}=12\\{a_1}{q^3}=16\end{array}\right.$,即$\left\{\begin{array}{l}{{a}_{1}q(1+q)=12}\\{{a}_{1}q•{q}^{2}=16}\end{array}\right.$,
兩式相除得,$\frac{q^2}{1+q}=\frac{4}{3}$,即3q2-4q-4=0,
又q>0,得q=2,代入得a1=2,
所以${a_n}={2^n}$;
(2)由(1)得${b_n}={log_2}{2^n}=n,\frac{b_n}{a_n}=\frac{n}{2^n}$,
所以${T_n}=\frac{1}{2^1}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n-1}{{{2^{n-1}}}}+\frac{n}{2^n}$①,
$\frac{1}{2}{T_n}=\frac{1}{2^2}+\frac{2}{2^3}+\frac{3}{2^4}+…+\frac{n-1}{2^n}+\frac{n}{{{2^{n+1}}}}$②
由①-②得,$\frac{1}{2}{T}_{n}=\frac{1}{{2}^{1}}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}}-\frac{n}{{2}^{n+1}}$
=$\frac{\frac{1}{2}[1-{(\frac{1}{2})}^{n}]}{1-\frac{1}{2}}-\frac{n}{{2}^{n+1}}=1-\frac{n+2}{{2}^{n+1}}$,
所以Tn=$2-\frac{n+2}{{2}^{n}}$.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式,以及數(shù)列求和方法:錯(cuò)位相消法,考查方程思想,化簡(jiǎn)、變形能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果命題“p∧q”是假命題,“¬p”是真命題,那么( 。
A.命題p一定是真命題B.命題q一定是真命題
C.命題q一定是假命題D.命題p也可以是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=a|2x-1|(a>0且a≠1),滿足f(2)=2$\sqrt{2}$,則f(x)的單調(diào)遞減區(qū)間是( 。
A.[0,+∞)B.(-∞,$\frac{1}{2}$]C.[$\frac{1}{2}$,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知數(shù)列{an}是一個(gè)等差數(shù)列,Sn為其前n項(xiàng)和,a2=1,S9=-45.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{5-{a}_{n}}{2}$,cn=2bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a2=2,an+2=an+1+2an,
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}=\frac{{{{({a_n}+1)}^2}}}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知點(diǎn)$P(2,2\sqrt{2})$在拋物線C:y2=2px(p>0)上,設(shè)拋物線C的焦點(diǎn)為F,準(zhǔn)線為l,
(1)求F的坐標(biāo)和準(zhǔn)線l的方程;
(2)若過(guò)點(diǎn)F的直線l1與拋物線C交于A,B兩點(diǎn),且|AB|=8,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.?dāng)?shù)列{an}是公比大于1的等比數(shù)列,Sn是{an}的前n項(xiàng)和.若S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)令${_{n}}=\frac{1}{({{log}_{2}}{{a}_{n}}+1)({{log}_{2}}{{a}_{n+1}}+1)}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=ax3+bx2+cx+1(a≠0),下列結(jié)論中錯(cuò)誤的是( 。
A.?x0∈R,使得f(x0)=0
B.函數(shù)y=f(x)的圖象一定是中心對(duì)稱圖形
C.若x0是函數(shù)f(x)的極值點(diǎn),則f'(x0)=0
D.若x0是函數(shù)f(x)的極小值點(diǎn),則函數(shù)f(x)在區(qū)間(-∞,x0)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,在正方體ABCD-A1B1C1D1中,AB=2,平面α經(jīng)過(guò)B1D1,直線AC1∥α,則平面α截該正方體所得截面的面積為(  )
A.2$\sqrt{3}$B.$\frac{3\sqrt{2}}{2}$C.$\frac{\sqrt{34}}{2}$D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案