若曲線C:xy=1,過C上一點An(xn,yn)作一斜率為的直線交曲線C于另一點An+1(xn+1,yn+1),點A1,A2,…,An,…的橫坐標構(gòu)成數(shù)列{xn},其中
(1)求xn與xn+1的關(guān)系式;
(2)若,an=f(xn),求{an}的通項公式;
(3)求證:(-1)x1+(-1)2x2+…+(-1)nxn<1(n∈N*).
【答案】分析:(1)由題設(shè)條件知,由此可知xn+1xn=xn+2.
(2)由題意知,由此可知,所以
(3)由題意知,由此入手能夠推導出(-1)x1+(-1)2x2++(-1)nxn<1.
解答:解:(1)
∴xn+1xn=xn+2(4分)
(2)
(8分)
為等比數(shù)列

(10分)
(3),∴
當n為奇數(shù)時,(-1)nxn+(-1)n+1xn+1
=
=(12分)
當n為偶數(shù)時,(-1)x1+(-1)2x2++(-1)nxn
(13分)
當n為奇數(shù)時,(-1)x1+(-1)2x2++(-1)nxn

=
綜上,(-1)x1+(-1)2x2++(-1)nxn<1.(14分)
點評:本題考查數(shù)列性質(zhì)的綜合運用,解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若曲線C:xy=1,過C上一點An(xn,yn)作一斜率為kn=-
1
xn+2
的直線交曲線C于另一點An+1(xn+1,yn+1),點A1,A2,…,An,…的橫坐標構(gòu)成數(shù)列{xn},其中x1=
11
7

(1)求xn與xn+1的關(guān)系式;
(2)若f(x)=
1
x-2
,an=f(xn),求{an}的通項公式;
(3)求證:(-1)x1+(-1)2x2+…+(-1)nxn<1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:xy=1,過C上一點An(xn,yn)作一斜率kn=-
1
xn+2
的直線交曲線C于另一點An+1(xn+1,yn+1).
(1)求xn與xn+1之間的關(guān)系式;
(2)若x1=
11
7
,求證:數(shù)列
1
xn-2
+
1
3
是等比數(shù)列;
(3)求證:(-1)x1+(-1)2x2+(-1)3x3+…(-1)nxn<1(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若曲線C:xy=1,過C上一點An(xn,yn)作一斜率為數(shù)學公式的直線交曲線C于另一點An+1(xn+1,yn+1),點A1,A2,…,An,…的橫坐標構(gòu)成數(shù)列{xn},其中數(shù)學公式
(1)求xn與xn+1的關(guān)系式;
(2)若數(shù)學公式,an=f(xn),求{an}的通項公式;
(3)求證:(-1)x1+(-1)2x2+…+(-1)nxn<1(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若曲線C:xy=1,過C上一點An(xn,yn)作一斜率為kn=-
1
xn+2
的直線交曲線C于另一點An+1(xn+1,yn+1),點A1,A2,…,An,…的橫坐標構(gòu)成數(shù)列{xn},其中x1=
11
7

(1)求xn與xn+1的關(guān)系式;
(2)若f(x)=
1
x-2
,an=f(xn),求{an}的通項公式;
(3)求證:(-1)x1+(-1)2x2+…+(-1)nxn<1(n∈N*).

查看答案和解析>>

同步練習冊答案