已知F1、F2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦點,點P為雙曲線上任意一點,過F1作∠F1PF2的平分線的垂線,垂足為Q,則點Q的軌跡方程為( 。
A.x2+y2=a2B.x2+y2=b2C.x2-y2=a2D.x2-y2=b2
點F1關(guān)于∠F1PF2的角平分線PQ的對稱點M在直線PF2的延長線上,
故|F2M|=|PF1|-|PF2|=2a,
又OQ是△F2F1M的中位線,
故|OQ|=a,
點Q的軌跡是以原點為圓心,a為半徑的圓,
則點Q的軌跡方程為x2+y2=a2
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓 的離心率為,過的左焦點的直線被圓截得的弦長為.
(1)求橢圓的方程;
(2)設(shè)的右焦點為,在圓上是否存在點,滿足,若存在,指出有幾個這樣的點(不必求出點的坐標(biāo));若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知恒過定點(1,1)的圓C截直線x=-1所得弦長為2,則圓心C的軌跡方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(Ⅰ)求與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0截得的弦長為2
7
的圓的方程.
(Ⅱ)設(shè)定點M(-3,4),動點N在圓x2+y2=4上運(yùn)動,以O(shè)M、ON為兩邊作平行四邊形MONP,求點P的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,梯形ABCD中,ABCD,且AB⊥平面α,AB=2BC=2CD=4,點P為α內(nèi)一動點,且∠APB=∠DPC,則P點的軌跡為(  )
A.直線B.圓C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動圓過定點Q(1,0),且與定直線x=-1相切.
(1)求此動圓圓心P的軌跡C的方程;
(2)若過點M(4,0)的直線l與曲線C分別相交于A,B兩點,若2
AM
=
MB
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)P是圓x2+y2=25上的動點,點D是P在x軸上的射影,M為PD上一點,且|MD|=
4
5
|PD|
(Ⅰ)當(dāng)P在圓上運(yùn)動時,求點M的軌跡C的方程
(Ⅱ)求過點(3,0)且斜率
4
5
的直線被C所截線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓A:(x+2)2+y2=36,圓A內(nèi)一定點B(2,0),圓P過B點且與圓A內(nèi)切,則圓心P的軌跡為( 。
A.圓B.橢圓C.直線D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線mx+ny=4與⊙O:x2+y2=4沒有交點,則過點P(m,n)的直線與橢圓=1的交點個數(shù)是(  )
A.至多為1B.2C.1D.0

查看答案和解析>>

同步練習(xí)冊答案