等差數(shù)列{an}中,a10=4,a20=-16.
(Ⅰ)求通項(xiàng)公式an
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn的最大值及相應(yīng)n的值;
(Ⅲ)求數(shù)列{|an|}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:(I)設(shè)等差數(shù)列{an}的公差為d,利用等差數(shù)列的通項(xiàng)公式即可得出;
(II)由an≥0解得n≤12,即可得出.
(III)當(dāng)n≤12時(shí),an≥0,可得|an|=an,利用等差數(shù)列的前n項(xiàng)和公式即可得出Tn.當(dāng)n>12時(shí),Tn=S12-a13-a14-…-an=2S12-Sn,利用等差數(shù)列的前n項(xiàng)和公式即可得出Tn
解答: 解:(I)設(shè)等差數(shù)列{an}的公差為d,
∵a10=4,a20=-16.∴
a1+9d=4
a1+19d=-16
,解得
a1=22
d=-2

∴an=22+(n-1)×(-2)=-2n+24.
(II)由an≥0解得n≤12,且a12=0,因此前11項(xiàng)或12項(xiàng)的和最大.
(III)當(dāng)n≤12時(shí),an≥0,
∴|an|=an,∴Tn=22n+
n(n-1)
2
×-2
=-n2+23n.
當(dāng)n>12時(shí),Tn=S12-a13-a14-…-an=2S12-Sn=2×(-122+23×12)-(-n2+23n)=n2-23n+264.
Tn=
-n2+23n,n≤12
n2-23n+264,n≥13
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、含絕對(duì)值的數(shù)列的求和,考查了分類討論的思想方法,考查了推理能力與計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線2x+y+1=0和x+2y+2=0的位置關(guān)系有( 。
A、平行B、垂直
C、相交但不垂直D、重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集為實(shí)數(shù)集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.
(1)當(dāng)a=-4時(shí),求A∩B,(∁RA)∪B;
(2)若(∁RA)∩B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=(a+1)lnx+ax2+1,
(1)a=0時(shí),若x∈[1,+∞)有f(x)-m≥0,求實(shí)數(shù)m的取值范圍;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)設(shè)a≤-2,證明:對(duì)任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式
(1)3-2x-x2≤0;
(2)x(x-1)2(x-2)≥0;
(3)x2-ax-2a2<0;
(4)已知不等式ax2+bx+c>0的解集為{x|2<x<3},求不等式cx2-bx+a>0的解集;
(5)已知x<
3
2
,求函數(shù)y=2x+
1
2x-3
的最大值,并求出相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+x2-ax,a∈R.
(Ⅰ)若a=3,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)有兩個(gè)極值點(diǎn)x1、x2,記過(guò)點(diǎn)A(x1,f(x1)),B(x2,f(x2))的直線的斜率為k,問(wèn)是否存在a,使k=
2
a
-
a
2
?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF=
2
AD=2
2
,G是EF的中點(diǎn).
(1)求證:平面AGC⊥平面BGC;
(2)求三棱錐A-GBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镈={x|x≠0},且滿足對(duì)于任意的x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)和f(-1)的值;
(2)判斷f(x)的奇偶性并證明你的結(jié)論;
(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函數(shù),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x<
5
4
,則y=4x-2+
1
4x-5
最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案