如圖所示,在四棱錐P-ABCD中,地面四邊形ABCD是平行四邊形,E、F是棱PD的三等分點,H為棱PC的中點.
(1)求證:BE∥平面ACF;
(2)若直線PA交平面BHE與點G,求證:AF∥GE.
考點:直線與平面平行的判定,直線與平面平行的性質
專題:空間位置關系與距離
分析:(1)根據(jù)線面平行的判定定理,只要證明BE∥OF即可;
(2)容易得到EH∥FC,結合(1),利用面面平行的判定定理得到平面ACF∥平面BHE,再由面面平行的性質得證.
解答: 證明:(1)∵底面四邊形ABCD是平行四邊形,E、F是棱PD的三等分點,H為棱PC的中點.
∴O是BD的中點,F(xiàn)是DE的中點,
∴OF∥BE,
又BE?平面ACF,OF?平面ACF,
∴BE∥平面ACF.
(2)由(1)可知BE∥平面ACF.又EH∥CF,并且BE∩EH=E,AF∩CF=F,
∴平面ACF∥平面BHE,
又平面ACF∩平面PAD=GE,平面BHE∩平面PAD=AF,
∴GE∥AF.
點評:本題考查了線面平行的判定定理和性質定理的運用以及面面平行的性質的運用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若3tanx≥
3
,則x的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若2lgx+lg3=lg6,則x=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知非零向量
a
b
滿足|
a
|=3|
b
|,且關于x的函數(shù)f(x)=
1
2
x3+
1
2
|
a
|x2+
a
b
x為R上增函數(shù),則
a
,
b
夾角的取值范圍是(  )
A、[0,
π
2
]
B、[0,
π
3
]
C、(
π
3
,
π
2
]
D、(
π
3
,
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知非零向量列{
an
}滿足:
a1
=(x1,y1),
an
=(xn,yn)=
1
2
(xn-1-yn-1,xn+1+yn+1)(n≥2,n∈N*),
(1)證明:數(shù)列{|
an
|}是等比數(shù)列;
(2)向量
an-1
an
的夾角;
(3)設
a1
=(1,2),將
a1
,
a2
,
a3
an
,…中所有與
a1
共線的向量按原來的順序排成一列,記作
b1
b2
,
b3
bn
,…,令
OBn
=
b1
+
b2
+
b3
+…+
bn
,O為坐標原點,求點Bn的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線y2=4x的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足,如果直線AF的斜率為
3
,那么|PF|=(  )
A、4
3
B、4
C、8
3
D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次人才招聘會上,有A、B兩家公司分別開出它們的工資標準:A公司允諾第一年月工資為1500元,以后每年月工資比上一年月工資增加230元;B公司允諾第一年月工資為2000元,以后每年月工資在上一年的月工資基礎上遞增5%;設某人年初被A,B兩家公司同時錄取,試問:
(1)若該人分別在A或B公司連續(xù)工作n年,則他在第n年的月工資收入分別是多少;
(2)該人分別在A或B公司連續(xù)工作10年,僅從工資收入總量較多作為應聘的標準(不計其他因素),該人應該選擇哪家公司,為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}中,前n項的和為Sn,已知a3=
3
2
,S3=
9
2
,則S6等于( 。
A、
63
16
B、9或
63
16
C、
63
64
D、9或
63
64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個內角為A、B、C滿足sin2(A+C)>sin2A+sin2C,則△ABC的形狀是( 。
A、銳角三角形B、直角三角形
C、鈍角三角形D、不能確定

查看答案和解析>>

同步練習冊答案