1.(Ⅰ)(0.064)${\;}^{{-}^{\frac{1}{3}}}$-(-$\frac{7}{8}$)0+[(-2)3]${\;}^{-\frac{4}{3}}$+(16)-0.75
(Ⅱ)log3$\sqrt{27}$+lg25+lg4+7${\;}^{lo{g}_{7}2}$+(-9.8)0

分析 (Ⅰ)根據(jù)指數(shù)冪的運算性質(zhì)計算即可.
(Ⅱ)根據(jù)對數(shù)的運算性質(zhì)計算即可.

解答 解:(Ⅰ)原式=$(0.{4}^{3})^{-\frac{1}{3}}$-1+(-2)-4+$({2}^{4})^{-\frac{3}{4}}$=$\frac{5}{2}$-1+$\frac{1}{16}$+$\frac{1}{8}$=$\frac{27}{16}$,
(Ⅱ)原式=log33${\;}^{\frac{3}{2}}$+lg(25×4)+2+1=$\frac{3}{2}$+2+3=$\frac{13}{2}$

點評 本題考查了對數(shù)的運算性質(zhì)和指數(shù)冪的運算性質(zhì),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.設數(shù)列{an}的前n項和為Sn,且滿足Sn=2-an,n=1,2,3,….
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an,求數(shù)列{bn}的通項公式;
(3)設cn=$\frac{{n({3-{b_n}})}}{2}$,數(shù)列{cn}的前n項和為Tn=$\frac{15}{4}$.求n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若loga3<1,則a取值范圍是( 。
A.a>3B.1<a<3C.0<a<1D.a>3或0<a<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.不等式(${\frac{1}{2}}$)x-5≤2x的解集是{x|x≥$\frac{5}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=$\frac{3{x}^{2}}{\sqrt{1-x}}$+lg(3x+1)的定義域為( 。
A.[-$\frac{1}{3}$,1)B.(-$\frac{1}{3}$,1)C.(-$\frac{1}{3}$,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)fM(x)的定義域為實數(shù)集R,滿足fM(x)=$\left\{\begin{array}{l}1,x∈M\\ 0,x∉M\end{array}$(M是R的非空真子集),在R上有兩個非空真子集A,B,且A∩B=∅,則F(x)=$\frac{{{f_{A∪B}}(x)+1}}{{{f_A}(x)+{f_B}(B)+1}}$的值域為{1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知m,n∈R,集合A={2,log7m},集合B={m,n},若A∩B={0},則m-n=( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知數(shù)列{an}滿足a1=1,an+an+1=($\frac{1}{3}$)n,Sn=a1+3a2+32a3+…+3n-1an,利用類似等比數(shù)列的求和方法,可求得4Sn-3nan=n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點P在線段AD1上運動,給出以下四個命題:
①異面直線C1P與CB1所成的角為定值;
②二面角P-BC1-D的大小為定值;
③三棱錐D-BPC1的體積為定值;
其中真命題的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

同步練習冊答案