在數(shù)列{an}中,a1=2,an+1=an+2n-3,則a100=
 
考點:等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:易得a2-a1=-1,a3-a2=1,…an-an-1=2n-5,累加可得通項公式,可得答案.
解答: 解:在數(shù)列{an}中,a1=2,an+1=an+2n-3,
∴an+1-an=2n-3,
∴a2-a1=-1,a3-a2=1,…an-an-1=2n-5,
以上n-1個式子相加可得an-a1=
(n-1)(-1+2n-5)
2

∴a100=
99×194
2
+2=9605
故答案為:9605
點評:本題考查等差數(shù)列的求和公式和通項公式,累加是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(x+1),g(x)=loga(1-x),a>0且a≠1
(1)求函數(shù)f(x)+g(x)的定義域且判斷奇偶性;
(2)求不等式f(x)≥g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)cos80°=k,則tan100°=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù) f(x)=ax3+bx+10其中a,b 為常數(shù),若f(-2)=2,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)Z滿足(1+i)Z=|1-i|,是Z的虛部為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi),復數(shù)z=-i2+i3的共軛復數(shù)對應的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題:“對任意a>-2,都有a2>4”的否定是( 。
A、對任意a>-2,都有a2≤4
B、存在a0>-2,使得a02≤4
C、對任意a≤-2,都有a2≤4
D、不存在a0>-2,使得a02>4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=x-lnx,x∈(0,1]的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=(
2
5
|x|的單調(diào)區(qū)間是
 

查看答案和解析>>

同步練習冊答案