計算:
(1)
a-3b-2(-3a2b-1)
9a-2b-3

(2)|1+lg0.001|+
lg2
1
3
-4lg3+4
+lg6-lg0.02
分析:(1)根據(jù)單項式乘單項式的運算法則,及單項式除以單項式的運算法則,結(jié)合有理數(shù)指數(shù)冪的運算性質(zhì),我們先對分子進行化簡,進而得到結(jié)果.
(2)根據(jù)對數(shù)的運算性質(zhì)、絕對值的性質(zhì)、完成平方公式,我們可以分別去掉(2)中的絕對值符號、根據(jù)及對數(shù)運算符,進而得到答案.
解答:解:(1)
a-3b-2(-3a2b-1)
9a-2b-3

=
-3a-1b-3
9a-2b-3

=-
1
3
a

(2)|1+lg0.001|+
lg2
1
3
-4lg3+4
+lg6-lg0.02

=|1-3|+
lg2
1
3
+4lg
1
3
+4
+lg(2×3)-lg(2×0.01)

=|-2|+|lg
1
3
+2|+lg2+lg3-(lg2+lg0.01)

=2+2-lg3+lg2+lg3-lg2+2
=6
點評:本題考查的知識點是有理數(shù)指數(shù)冪的運算性質(zhì),對數(shù)的運算性質(zhì),熟練掌握這些運算性質(zhì)是解答指數(shù)混合運算和對數(shù)混合運算的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}的通項公式an=
1
(n+1)2
(n∈N+)
,記f(n)=(1-a1)(1-a2)…(1-an),試通過計算f(1),f(2),f(3)的值,推測出f(n)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)化簡4(
a
-3
b
+5
c
)-2(-3
a
-6
b
+8
c
)=
10
a
+4
c
10
a
+4
c
(2)計算:已知向量
e1
,
e2
不共線,實數(shù)x,y滿足(3x-4y)
e1
+(2x-3y)
e2
=6
e1
+3
e2
,則x-y的值
=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)3(5
a
-3
b
)-2(6
a
+
b
)=
 

(2)4(
a
-3
b
+5
c
)-2(-3
a
-6
b
+8
c
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

計算:
(1)
a-3b-2(-3a2b-1)
9a-2b-3

(2)|1+lg0.001|+
lg2
1
3
-4lg3+4
+lg6-lg0.02

查看答案和解析>>

同步練習冊答案