曲線C:x=
-y2-2y
與直線l:x-y-m=0有兩個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):直線和圓的方程的應(yīng)用
專題:直線與圓
分析:作出曲線圖象,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:由x=
-y2-2y
可知x≥0,
得x2=-y2-2y,
即x2+y2+2y=0,
則x2+(y+1)2=1,
作出曲線C:x=
-y2-2y
的圖象如圖:
當(dāng)直線x-y-m=0經(jīng)過點(diǎn)A(-2,0)時(shí),直線直線和曲線有兩個(gè)交點(diǎn),
此時(shí)-2-m=0,交點(diǎn)m=-2,
當(dāng)直線與曲線相切時(shí),
圓心(-1,0)到直線x-y-m=0的距離d=
|-1-m|
1+1
=
|m+1|
2
=1
,
即|m+1|=
2
,
解得m=
2
-1
(舍去)或-
2
-1
,
此時(shí)直線和曲線只有一個(gè)交點(diǎn),
故滿足條件的m的取值范圍為(-
2
-1
,-2],
故答案為:(-
2
-1
,-2]
點(diǎn)評:本題主要考查直線和圓的位置關(guān)系的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(cosα,sinα),
b
=(cosα,sinα),且k
a
+
b
的長度是
a
-k
b
的長度的
3
倍(k>0).
(1)求證:
a
+
b
a
-
b
垂直;
(2)用k表示
a
b
;
(3)用
a
b
的最小值以及此時(shí)
a
b
的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)值域
(1)x∈[2,3],f(x)=
x2-4x+2
 x-1
;
(2)f(x)=
1
x2-2x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
m
+
y2
3
=1(m>0)的一個(gè)焦點(diǎn)是(0,1),則m=
 
;若橢圓上一點(diǎn)P與橢圓的兩個(gè)焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形PF1F2的面積為
2
,則點(diǎn)P的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某校高三年級800名學(xué)生中隨機(jī)抽取50名測量身高,據(jù)測量,被抽取的學(xué)生的身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組[155,160),第二組[160,165),…,第八組[190,195],如圖是按上述分組方法得到的頻率分布直方圖:
(1)求出如圖中第七組所代表的矩形的縱坐標(biāo);
(2)試估計(jì)這所學(xué)校高三年級800名學(xué)生中身高在180cm以上(含180cm)的人數(shù)為多少;
(3)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),如果存在函數(shù)g(x)=ax+b(a,b為常數(shù)),使得f(x)≥g(x)對一切實(shí)數(shù)x都成立,則稱g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).給出如下命題:
①函數(shù)g(x)=-2是函數(shù)f(x)=
lnx,x>0
1,x≤0
的一個(gè)承托函數(shù);
②函數(shù)g(x)=x-1是函數(shù)f(x)=x+sinx的一個(gè)承托函數(shù);
③若函數(shù)g(x)=ax是函數(shù)f(x)=ex的一個(gè)承托函數(shù),則a的取值范圍是[0,e];
④值域是R的函數(shù)f(x)不存在承托函數(shù);
其中,所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從6本不同的數(shù)學(xué)書和5本不同的英語書中取3本,要求數(shù)學(xué)書和英語書都要有取到,則不同的取法種數(shù)有( 。┓N.
A、
C
3
11
-
C
3
5
B、
C
1
5
C
2
6
C、
C
1
5
C
2
6
+
C
2
5
C
1
6
D、
C
3
11
-
C
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos2x-sin2x 的一條對稱軸為( 。
A、x=
π
4
B、x=
π
8
C、x=-
π
8
D、x=-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個(gè)銳角α、β,它們的終邊分別交單位圓于A、B兩點(diǎn).已知A、B兩點(diǎn)的橫坐標(biāo)分別是
2
10
、
2
5
5
.求tan(α+β)的值=
 

查看答案和解析>>

同步練習(xí)冊答案