設(shè)f(x)=x+
e2
x
(x>0),若函數(shù)g(x)=f(x)-m有零點(diǎn),則m的取值范圍是
 
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)g(x)=f(x)-m有零點(diǎn),轉(zhuǎn)化為:f(x)=x+
e2
x
(x>0)與y=m圖象有交點(diǎn),求出函數(shù)f(x)=x+
e2
x
(x>0)的最小值即可.
解答: 解:函數(shù)g(x)=f(x)-m有零點(diǎn),就是f(x)=x+
e2
x
(x>0)與y=m圖象有交點(diǎn),
f(x)=x+
e2
x
≥2
x•
e2
x
=2e
,(x>0),當(dāng)且僅當(dāng)x=e時(shí)取等號(hào).
函數(shù)f(x)=x+
e2
x
的最小值為:2e.
∴m≥2e.
故答案為:[2e,+∞).
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)問題,考查轉(zhuǎn)化思想,是一道基礎(chǔ)題,考查轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2x3-9x2+12x+8c
(1)當(dāng)c=1時(shí),求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若對(duì)于任意的x∈[0,3],都有f(x)<c2成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式:-x2+4x+5<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},{bn}滿足bn=log2an,n∈N*,其中{bn}是等差數(shù)列,且a8•a13=
1
2
,則b1+b2+b3+…+b20=( 。
A、-10
B、10
C、log25
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)與y=(
1
2
x-
2
的圖象關(guān)于y軸對(duì)稱,則滿足f(x)>0的實(shí)數(shù)x范圍是( 。
A、{x|x<0}
B、{x|x<-
1
2
}
C、{x|x>
1
2
}
D、{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log2|x|的圖象( 。
A、關(guān)于直線y=-x對(duì)稱
B、關(guān)于原點(diǎn)對(duì)稱
C、關(guān)于y軸對(duì)稱
D、關(guān)于直線y=x對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(x2+1)
(1)求函數(shù)f(x)的定義域和值域;
(2)證明:函數(shù)f(x)在(0,+∞)上遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x2-2x|-a.
(1)當(dāng)a=0時(shí),畫出函數(shù)f(x)的簡(jiǎn)圖,并指出f(x)的單調(diào)遞減區(qū)間;
(2)若函數(shù)f(x)有4個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)-3≤x<-1時(shí),當(dāng)f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí).f(x)=x,則f(1)+f(2)+f(3)+…+f(2015)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案