【題目】已知:中,頂點,邊AB上的中線CD所在直線的方程是,邊AC上的高BE所在直線的方程是.
求點B、C的坐標(biāo);
求的外接圓的方程.
【答案】(1)(2)或
【解析】
試題(1)求,點就設(shè),點的坐標(biāo),同時可以表示出的坐標(biāo),根據(jù)在上,且中點在上.兩式聯(lián)立可求出;根據(jù)在上,且得到,兩式聯(lián)立可求出.
(2)所求的圓經(jīng)過三角形的三個頂點,所以設(shè)出圓的一般方程,將,,代入解方程組即可得到所求圓的方程.或者根據(jù)三角形的外接圓的圓心是各邊垂直平分線的交點,所以可以根據(jù)(1)中的,和已知的求兩個邊的垂直平分線,取其交點做圓心,該點到各個頂點的距離為半徑,求出圓的方程.
試題解析:(1)由題意可設(shè),則的中點.
因為的中點必在直線上,代入有①
又因為在直線上,所以代入有②
由①②聯(lián)立解得.則,
因為在直線上,代入有③
又因為直線,所以有,則有④
根據(jù)③④有.
(2)因為三角形外接圓的圓心是各邊垂直平分線的交點,
所以找到三角形兩邊的垂直平分線求得的交點就是外接圓的圓心,該點到各頂點的距離就是半徑.
根據(jù)兩點,可得斜率為,所以中垂線斜率為,中點為,則中垂線為⑤
同理可得直線的中垂線為⑥,
由⑤⑥可得圓心,半徑為,所以外接圓為
法二:(2)設(shè)外接圓的方程為,其中。
因為三角形的個頂點都在圓上,所以根據(jù)(1),將三點坐標(biāo)代入有:
解得
∴外接圓的方程為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰直角三角形中,,,分別是上的點,,為的中點將沿折起,得到如圖2所示的四棱椎,其中.
證明:平面;
求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是2019年春運(yùn)期間十二個城市售出的往返機(jī)票的平均價格以及相比去年同期變化幅度的數(shù)據(jù)統(tǒng)計圖,給出下列4個結(jié)論
其中結(jié)論正確的是( )
A.深圳的變化幅度最小,北京的平均價格最高;
B.深圳和廈門往返機(jī)票的平均價格同去年相比有所下降;
C.平均價格從高到低位于前三位的城市為北京,深圳,廣州;
D.平均價格的漲幅從高到低位于前三位的城市為天津,西安,上海.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市主辦的科技知識競賽的學(xué)生成績中隨機(jī)選取了40名學(xué)生的成績作為樣本,已知這40名學(xué)生的成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組,第一組;第二組;…;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.
(1)求成績在區(qū)間內(nèi)的學(xué)生人數(shù);
(2)從成績大于等于80分的學(xué)生中隨機(jī)選取2名,求至少有1名學(xué)生的成績在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實數(shù)滿足約束條件
(1)若點在上述不等式所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍.
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是一個容量為20的樣本數(shù)據(jù)分組后的頻率分布表:
分組 | [8.5,11.5] | [11.5,14.5] | [14.5,17.5] | [17.5,20.5] |
頻數(shù) | 4 | 2 | 6 | 8 |
(I)若用組中值代替本組數(shù)據(jù)的平均數(shù),請計算樣本的平均數(shù);
(II)以頻率估計概率,若樣本的容量為2000,求在分組[14.5,17.5)中的頻數(shù);
(Ⅲ)若從數(shù)據(jù)在分組[8.5,11.5)與分組[11.5,14.5)的樣本中隨機(jī)抽取2個,求恰有1個樣本落在分組[11.5,14.5)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為何值時,方程組
(1)有一個實數(shù)解,并求出方程組的解集;
(2)有兩個不相等的實數(shù)解;
(3)沒有實數(shù)解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱中,底面ABC為等腰直角三角形,,,,M是側(cè)棱上一點,設(shè),用空間向量知識解答下列問題.
1若,證明:;
2若,求直線與平面ABM所成的角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com