2.已知命題p:“?x∈[0,1],x2-a≤0”,命題q:“$\frac{2{x}^{2}}{a}$+$\frac{{y}^{2}}{a-1}$=1是焦點在x軸上的橢圓的標準方程”,若命題“p∧q”是真命題,求實數(shù)a的取值范圍.

分析 若命題“p∧q”是真命題,則命題p,q均為真命題,進而可得實數(shù)a的取值范圍.

解答 解:若命題p是真命題,
則?x∈[0,1],x2≤a,即a≥1,
若命題q是真命題,
則$\frac{a}{2}>a-1>0$,即1<a<2,
若命題“p∧q”是真命題,
則1<a<2.

點評 本題以命題的真假判斷與應用為載體,考查了函數(shù)恒成立問題,橢圓的標準方程,復合命題,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,AD=3BC,現(xiàn)將等腰梯形ABCD沿OB折起如圖乙所示的四棱錐P-OBCD,且PC=$\sqrt{3}$,點E是線段OP的中點.

(1)證明:OP⊥CD;
(2)在圖中作出平面CDE與PB交點Q,并求線段QD的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-1|+|x-a|.
(1)若a≤2,解不等式f(x)≥2;
(2)若a>1,?x∈R,f(x)+|x-1|≥1,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.漳州市“網(wǎng)約車”的現(xiàn)行計價標準是:路程在2km以內(含2km)按起步價8元收取,超過2km后的路程按1.9元/km收取,但超過10km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85元).
(1)將某乘客搭乘一次“網(wǎng)約車”的費用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16km,他準備先乘一輛“網(wǎng)約車”行駛8km后,再換乘另一輛“網(wǎng)約車”完成余下行程,請問:他這樣做是否比只乘一輛“網(wǎng)約車”完成全部行程更省錢?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖(1)所示,在直角梯形ABCD中,$AD∥BC,∠BAD=\frac{π}{2},AB=BC=\frac{1}{2}AD$,E是AD的中點,O是AC與BE的交點.將△ABE沿BE折起到△A1BE的位置,如圖(2)所示.

(1)證明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求平面A1BC與平面A1CD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.拋物線x2=4y的焦點為F,過點(0,-1)作直線交拋物線于不同兩點A,B,以AF,BF為鄰邊作平行四邊形FARB,求頂點R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在區(qū)間[1,6]上隨機地取一個數(shù)x,則事件“$1≤log_2^{\;}x≤2$”發(fā)生的概率為( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知命題q:?x∈R,cosx≤1,則¬q是(  )
A.?x∈R,cosx≥1B.?x∈R,cosx>1C.?x0∈R,cosx0≥1D.?x0∈R,cosx0>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若$x∈({e,{e^2}}),a=lnx,b={({\frac{1}{2}})^{lnx}},c={e^{lnx}}$,則a,b,c的大小關系為( 。
A.c>b>aB.c>a>bC.a>b>cD.b>c>a

查看答案和解析>>

同步練習冊答案