如圖所示的直觀圖的平面圖形ABCD是
A.任意梯形B.任意四邊形C.平行四邊形D.直角梯形
D
分析:由直觀圖可知,BC,AD兩條邊與橫軸平行且不等,邊AB與縱軸平行,得到AB與兩條相鄰的邊之間是垂直關系,而另外一條邊CD不和上下兩條邊垂直,得到平面圖形是一個直角梯形.
解答:解:根據(jù)直觀圖可知,BC,AD兩條邊與橫軸平行且不等,
邊AB與縱軸平行,
∴AB⊥AD,AB⊥BC
∴平面圖形ABCD是一個直角梯形,
故選D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,兩點間的“L-距離”定義為則平面內與軸上兩個不同的定點的“L-距離”之和等于定值(大于)的點的軌跡可以是(   )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的焦點為,拋物線與橢圓在第一象限的交點為,若
(1)求的面積;                   
(2)求此拋物線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
扇形中,半徑°,在的延長線上有一動點,過點與半圓弧相切于點,且與過點所作的的垂線交于點,此時顯然有CO=CD,DB=DE,問當OC多長時,直角梯形面積最小,并求出這個最小值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的左、右焦點分別為F1、F2,短軸兩個端點為A、B,且四邊形F1AF2B是邊長為2的正方形。
(1)求橢圓的方程;
(2)若C、D分別是橢圓長的左、右端點,動點M滿足MD⊥CD,連接CM,交橢圓于點P。證明:為定值。
(3)在(2)的條件下,試問x軸上是否存異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)雙曲線的中心是原點O,它的虛軸長為,相應于焦點F(c,0)(c>0)的準線與x軸交于點A,且|OF|=3|OA|,過點F的直線與雙曲線交于P、Q兩點.
(1)求雙曲線的方程;
(2)若=0,求直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
用半徑為R的圓形鐵皮剪出一個圓心角為α的扇形,制成一個圓錐形容器,求:扇形的.圓心角多大時,容器的容積最大?并求出此時容器的最大容積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓的半徑為,從圓外一點引切線和割線,


圓心的距離為,,則切線的長為     。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若圓截直線得弦長為,則a的值為(  )
A.-2或2B.C.2或0D.-2或0

查看答案和解析>>

同步練習冊答案