某學(xué)校舉行投籃比賽,比賽規(guī)則如下:每次投籃投中一次得2分,未中扣1分,每位同學(xué)原始積分均為0分,當(dāng)累積得分少于或等于-2分則停止投籃,否則繼續(xù),每位同學(xué)最多投籃5次.且規(guī)定總共投中5、4、3次的同學(xué)分別為一、二、三等獎(jiǎng),獎(jiǎng)金分別為30元、20元、10元.某班甲、乙、丙同學(xué)相約參加此活動(dòng),他們每次投籃命中的概率均為
1
2
,且互不影響.
(1)求甲同學(xué)能獲獎(jiǎng)的概率;
(2)記甲、乙、丙三位同學(xué)獲得獎(jiǎng)金總數(shù)為X,求X的期望EX.
考點(diǎn):離散型隨機(jī)變量的期望與方差,古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:(1)由題意,利用互斥事件加法公式能求出甲同學(xué)能獲獎(jiǎng)的概率.
(2)記甲同學(xué)獲得獎(jiǎng)金為Y,Y=0,10,20,30,分別求出相應(yīng)的概率能求出EY,由EX=3EY能求出X的期望EX.
解答: 解:(1)由題意知,甲同學(xué)能獲獎(jiǎng)的概率:
P=[
C
3
5
(
1
2
)
5
-(
1
2
)
5
]+
C
4
5
(
1
2
)5+(
1
2
)5=
15
32
.(6分)
(2)記甲同學(xué)獲得獎(jiǎng)金為Y,
Y=0,10,20,30,
P(Y=0)=
C
0
5
(
1
2
)5+
C
1
5
(
1
2
)(
1
2
)4+
C
2
5
(
1
2
)2(
1
2
)3
=
1
2
,
P(Y=10)=
C
3
5
(
1
2
)3(
1
2
)2
=
5
16

P(Y=20)=
C
4
5
(
1
2
)4(
1
2
)
=
5
32
,
P(Y=30)=
C
5
5
(
1
2
)5
=
1
32

則Y的分布列如下:
Y0102030

P
1
2
5
16
5
32
1
32
-----(10分)
∴EY=0×
1
2
+10×
5
16
+20×
5
32
+30×
1
32
=
115
16
,(11分),
EX=3EY=
345
16
.(13分)
點(diǎn)評(píng):本題考查概率的求法,考查注意離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,在歷年高考中都是必考題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)m為何值時(shí),方程2x2+4mx+3m-1=0有兩個(gè)負(fù)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

成都外國語學(xué)校開設(shè)了甲,乙,丙三門選修課,學(xué)生對(duì)每門均可選或不選,且選哪門課程互不影響.已知某學(xué)生只選修甲的概率為0.08,只選修甲和乙的概率為0.12,至少選修一門的概率為0.88,用ξ表示該學(xué)生選修課程的門數(shù),用η表示該學(xué)生選修課程門數(shù)和沒有選修課程門數(shù)的乘積.
(1)記“函數(shù)f(x)=x2+ηx為偶函數(shù)”為事件A,求事件A的概率;
(2)求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式(m-2)x2-mx-1≥0的解集為{x|x1≤x≤x2},且1≤|x1-x2|≤3,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=px+q,集合A={x丨x=f(x)},集合B={x丨x=f[f(x)]}.
(1)求證:A⊆B;
(2)若A=B,求p,q應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,1),B(2,3),C(3,2),D(x,y)
(1)若
DA
+
DB
+
DC
=
0
,求|
OD
|;
(2)設(shè)
OD
=m
AB
+n
AC
(m,n∈R),用x,y表示m-n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x2-a)(a∈R),g(x)=lnx.
(1)若f(x)在x=1處取得極值,求f(x)的極大值;
(2)若在區(qū)間[1,2]上f(x)的圖象在g(x)圖象的上方(沒有公共點(diǎn)),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司有價(jià)值a萬元的一條流水線,要提高該流水線的生產(chǎn)能力,就要對(duì)其進(jìn)行技術(shù)改造,從而提高產(chǎn)品附加值,改造需要投入,假設(shè)附加值y萬元與技術(shù)改造投入x萬元之間的關(guān)系滿足:
(1)y與a-x和x的乘積成正比;
(2)x=
a
2
時(shí),y=a2;
(3)0≤
x
2(a-x)
≤t,其中為常數(shù),且t∈[0,1].
求:(Ⅰ)設(shè)y=f(x),求f(x)表達(dá)式,并求y=f(x)的定義域;
(Ⅱ)求出附加值y的最大值,并求出此時(shí)的技術(shù)改造投入.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=xlnx-ax,g(x)=-x2-2,
(Ⅰ)對(duì)一切x∈(0,+∞),f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=-1時(shí),求函數(shù)f(x)在[m,m+3](m>0)上的最小值.

查看答案和解析>>

同步練習(xí)冊答案