正實數(shù)數(shù)列{an}中,a1=1,a2=5,且{an2}成等差數(shù)列。
 (I)證明數(shù)列{an}中有無窮多項為無理數(shù);
 (Ⅱ)當n為何值時,an為整數(shù),并求出使an<200的所有整數(shù)項的和。
解:(Ⅰ)由已知有an2=1+24(n-1),從而an=
,則
用反證法證明這些an都是無理數(shù)
假設為有理數(shù),則an必為正整數(shù),且

矛盾
所以都是無理數(shù)
即數(shù)列{an}中有無窮多項為無理數(shù);
(Ⅱ)要使an為整數(shù),由(an-1)(an+1)=24(n-1)可知an-1,an+1同為偶數(shù),且其中一個必為3的倍數(shù)
所以有an-1=6m或an+1=6m
當an=6m+1時,有an2=36m2+12m+1=1+12m(3m+1) (m∈N),又m(3m+1)必為偶數(shù),所以an=6m+1(m∈N)滿足an2=1+24(n-1)
時,an為整數(shù)
同理an=6m-1(m∈N*)有a2n=36m2-12m+1=1+12m· (3m-1)(m∈N*)
也滿足an2=1+24(n-1)
時,an為整數(shù)
顯然an=6m-1(m∈N*)和an=6m+1(m∈N)是數(shù)列中的不同項
所以當N*)時,an為整數(shù)
由an=6m+1<200(m∈N)有0≤m≤33
由an=6m-1<200(m∈N*)有1≤m≤33
設an中滿足an<200的所有整數(shù)項的和為S,則
S=(5+11+…+197)+(1+7+13+…+199)
6733。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正實數(shù)數(shù)列{an}中,a1=1,a2=5,且{an2}成等差數(shù)列.
(1)證明數(shù)列{an}中有無窮多項為無理數(shù);
(2)當n為何值時,an為整數(shù),并求出使an<200的所有整數(shù)項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

正實數(shù)數(shù)列{an}中,a1=1,a2=5,且{an2}成等差數(shù)列.
(1)證明數(shù)列{an}中有無窮多項為無理數(shù);
(2)當n為何值時,an為整數(shù),并求出使an<200的所有整數(shù)項的和.

查看答案和解析>>

科目:高中數(shù)學 來源:江西 題型:解答題

正實數(shù)數(shù)列{an}中,a1=1,a2=5,且{an2}成等差數(shù)列.
(1)證明數(shù)列{an}中有無窮多項為無理數(shù);
(2)當n為何值時,an為整數(shù),并求出使an<200的所有整數(shù)項的和.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江西省高考數(shù)學試卷(文科)(解析版) 題型:解答題

正實數(shù)數(shù)列{an}中,a1=1,a2=5,且{an2}成等差數(shù)列.
(1)證明數(shù)列{an}中有無窮多項為無理數(shù);
(2)當n為何值時,an為整數(shù),并求出使an<200的所有整數(shù)項的和.

查看答案和解析>>

同步練習冊答案