如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件: |F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;

(2)求弦AC中點(diǎn)的橫坐標(biāo);

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

(1) =1 (2) =4 (3) -m


解析:

(1)由橢圓定義及條件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3.

故橢圓方程為=1.

(2)由點(diǎn)B(4,yB)在橢圓上,得|F2B|=|yB|=. 因?yàn)闄E圓右準(zhǔn)線方程為x=,離心率為,根據(jù)橢圓定義,有|F2A|=(x1),|F2C|=(x2),

由|F2A|、|F2B|、|F2C|成等差數(shù)列,得

(x1)+(x2)=2×,由此得出: x1+x2=8.

設(shè)弦AC的中點(diǎn)為P(x0,y0),則x0==4.

(3)解法一:  由A(x1,y1),C(x2,y2)在橢圓上.

     

①-②得9(x12x22)+25(y12y22)=0,

即9×=0(x1x2)

 (k≠0)

代入上式,得9×4+25y0(-)=0  (k≠0)

k=y0(當(dāng)k=0時(shí)也成立).

由點(diǎn)P(4,y0)在弦AC的垂直平分線上,得y0=4k+m,

所以m=y0-4k=y0y0=-y0.

由點(diǎn)P(4,y0)在線段BB′(B′與B關(guān)于x軸對(duì)稱)的內(nèi)部,

得-y0,所以-m.

解法二:  因?yàn)橄?i>AC的中點(diǎn)為P(4,y0),所以直線AC的方程為

yy0=-(x-4)(k≠0)                                         ③

將③代入橢圓方程=1,得

(9k2+25)x2-50(ky0+4)x+25(ky0+4)2-25×9k2=0

所以x1+x2==8,解得k=y0. (當(dāng)k=0時(shí)也成立)

(以下同解法一).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求該弦橢圓的方程;

(2)求弦AC中點(diǎn)的橫坐標(biāo);

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆四川省高二12月月考理科數(shù)學(xué)試卷 題型:解答題

如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

 

 

(1)求該弦橢圓的方程;

(2)求弦AC中點(diǎn)的橫坐標(biāo);

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省高二上學(xué)期12月月考理科數(shù)學(xué) 題型:解答題

.(本小題滿分12分).

如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

 

 

 

(1) 求該弦橢圓的方程;

(2)求弦AC中點(diǎn)的橫坐標(biāo);

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆山東省高二12月月考理科數(shù)學(xué) 題型:解答題

(本小題滿分12分).

如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過(guò)點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.

 

(1)求該弦橢圓的方程;

(2)求弦AC中點(diǎn)的橫坐標(biāo);

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案