某學(xué)校共有師生3 200人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個(gè)容量為160的樣本,已知從學(xué)生中抽取的人數(shù)為150,那么該學(xué)校的教師人數(shù)是________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知曲線C1的參數(shù)方程是$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}\right.(θ$為參數(shù)),曲線C2的參數(shù)方程是$\left\{{\begin{array}{l}{x=-3+t}\\{y=\frac{3+3t}{4}}\end{array}}\right.(t$為參數(shù)).
(1)將曲線C1,C2的參數(shù)方程化為普通方程;
(2)求曲線C1上的點(diǎn)到曲線C2的距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年湖北省仙桃市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

某中學(xué)的高二(1)班男同學(xué)名,女同學(xué)名,老師按照分層抽樣的方法組建了一個(gè)人的課外興趣小組.

(1)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);

(2)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有名女同學(xué)的概率;

(3)實(shí)驗(yàn)結(jié)束后,第一次做實(shí)驗(yàn)的同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為,第二次做實(shí)驗(yàn)的同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為,請(qǐng)問(wèn)哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年湖北省仙桃市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)滿足,且都是正數(shù),則的最大值為 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年河南省商丘市高一文下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:解答題

四邊形ABCD的內(nèi)角A與C互補(bǔ),AB=1,BC=3,CD=DA=2.

(Ⅰ)求C和BD;

(Ⅱ)求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年河南省商丘市高一文下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

為了得到函數(shù)y=sin(2x-)的圖象,可以將函數(shù)y=cos 2x的圖象 ( )

A.向右平移個(gè)單位長(zhǎng)度

B.向右平移個(gè)單位長(zhǎng)度

C.向左平移個(gè)單位長(zhǎng)度

D.向左平移個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年河南省商丘市高一文下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的程序框圖,如果輸入的,則輸出的s屬于( )

A.[-3,4] B.[-5,2] C.[-4,3] D.[-2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年河南省商丘市高一理下學(xué)期期末考數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的圖象關(guān)于直線對(duì)稱,則的值為( )

A.1 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知點(diǎn)A(x1,y1),B(x2,y2)是拋物線y2=8x上相異兩點(diǎn),且滿足x1+x2=4.
(Ⅰ)若直線AB經(jīng)過(guò)點(diǎn)F(2,0),求|AB|的值;
(Ⅱ)是否存在直線AB,使得線段AB的中垂線交x軸于點(diǎn)M,且$|MA|=4\sqrt{2}$?若存在,求直線AB的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案