6.已知函數(shù) f( x)=a-$\frac{1}{{2}^{x}+1}$( x∈R).
(1)若 f( x)為奇函數(shù),求 a的值;
(2)在(1)的條件下,求 f( x)在區(qū)間[1,5]上的最小值.

分析 (1)由f( x)為R上的奇函數(shù),可得f(0)=0,解得a即可得出.
(2)由(1)知:f(x)=$\frac{1}{2}-\frac{1}{{2}^{x}+1}$,可知:f( x)在(-∞,+∞)上為增函數(shù),因此f( x)在區(qū)間[1,5]上的最小值為f(1).即可得出.

解答 解:(1)∵f( x)為R上的奇函數(shù),
∴f(0)=0,即a-$\frac{1}{{2}^{0}+1}$=0,解得a=$\frac{1}{2}$.
(2)由(1)知:f(x)=$\frac{1}{2}-\frac{1}{{2}^{x}+1}$,
f( x)在(-∞,+∞)上為增函數(shù),
∴f( x)在區(qū)間[1,5]上的最小值為f(1).
∵f(1)=$\frac{1}{2}-\frac{1}{2+1}$=$\frac{1}{6}$,
∴f( x)在區(qū)間[1,5]上的最小值為$\frac{1}{6}$.

點評 本題考查函數(shù)的單調(diào)性與奇偶性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,在四邊形ABCD中,AD⊥AB,DC∥AB,$AD=AE=DC=\frac{1}{2}AB=4$,△MDC是等邊三角形,且平面MDC⊥平面ABCD.
(Ⅰ)證明:EC∥平面MAD;
(Ⅱ)求三棱錐B-AMC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,a=4,b=2$\sqrt{6},B={60°}$,則此三角形解的情況是( 。
A.一解或兩解B.兩解C.一解D.無解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$滿足$|{\overrightarrow a}|=\sqrt{3}$,$|{\overrightarrow b}|=3\sqrt{3}$,若向量$\overrightarrow a在\overrightarrow b$方向上的投影為$\frac{{\sqrt{3}}}{2}$,且向量$\overrightarrow a-\overrightarrow c$與向量$\overrightarrow b-\overrightarrow c$的夾角為120°,則$|{\overrightarrow c}$|的最大值等于$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某校有1400名考生參加市模擬考試,現(xiàn)采用分層抽樣的方法從文、理考生中分別抽取20份和50份數(shù)學(xué)試卷,進行成績分析.得到下面的成績頻率分布表:
分數(shù)分值[0,30)[30,60)[60,90)[90,120)[120,150)
文科頻數(shù)24833
理科頻數(shù)3712208
(1)估計文科數(shù)學(xué)平均分及理科考生的及格人數(shù)(90分為及格分數(shù)線);
(2)在試卷分析中,發(fā)現(xiàn)概念性失分非常嚴重,統(tǒng)計結(jié)果如下:
文科理科
概念1530
其它520
問是否有90%的把握認為概念失分與文、理考生的不同有關(guān)?(本題可以參考獨立性檢驗臨界值表)
附參考公式與數(shù)據(jù):${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了適應(yīng)市場需要,某地準備建一個圓形生豬儲備基地(如圖),它的附近有一條公路,從基地中心O處向東走1km是儲備基地的邊界上的點A,接著向東再走7km到達公路上的點B;從基地中心O向正北走8km到達公路的另一點C.現(xiàn)準備在儲備基地的邊界上選一點D,修建一條由D通往公路BC的專用線DE,求DE的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.從4名男同學(xué)和3名女同學(xué)中選出3名參加某項活動,其中男女生都有的選法種數(shù)為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列1,2,$\sqrt{7}$,$\sqrt{10}$,$\sqrt{13}$的第六項是( 。
A.6B.4C.$\sqrt{15}$D.$\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)A={(m,n)|0<m<2,0<n<2},則任取(m,n)∈A,關(guān)于x的方程$\frac{m}{4}$x2+x+n=0有實根的概率為( 。
A.$\frac{1+2ln2}{4}$B.$\frac{1+ln2}{2}$C.$\frac{3-2ln2}{4}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

同步練習(xí)冊答案