3.在等差數(shù)列{an}中,S10=120,那么a1+a10的值是( 。
A.12B.24C.36D.48

分析 根據(jù)等差數(shù)列的求和公式,即可求出a1+a10的值.

解答 解:S10=$\frac{1}{2}$×10(a1+a10)=120,
所以a1+a10=24
故選B

點評 本題考查了等差數(shù)列的求和公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=x2+bx+c的圖象的對稱軸為x=2,則函數(shù)f(x)的導(dǎo)函數(shù)f'(x)的圖象不經(jīng)過( 。
A.第一象限B.第二象限C.第三象限D.第三象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z=i(1+2i),則復(fù)數(shù)z的虛部為( 。
A.2B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則( 。
A.$\frac{1}{2}$為f(x)的極大值點B.-2為f(x)的極大值點
C.2為f(x)的極大值D.$\frac{4}{5}$為f(x)的極小值點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某家公司每月生產(chǎn)兩種布料A和B,所有原料是三種不同顏色的羊毛.下表給出了生產(chǎn)每匹每種布料所需的羊毛量,以及可供使用的每種顏色的羊毛的總量.
羊毛顏色每匹需要/kg供應(yīng)量/kg
布料A布料B
331050
421200
261800
已知生產(chǎn)每匹布料A、B的利潤分別為60元、40元.分別用x、y表示每月生產(chǎn)布料A、B的匹數(shù).
(Ⅰ)用x、y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)如何安排生產(chǎn)才能使得利潤最大?并求出最大的利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.曲線$\sqrt{1-{{(x-1)}^2}}$=|y-1|-2與直線y=k(x-4)+1有兩個不同交點,則實數(shù)k的取值范圍是[1,$\frac{3-\sqrt{3}}{4}$)∪($\frac{\sqrt{3}-3}{4}$,-1]. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在?ABCD中,E是CD上一點,且$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$,AB=2BC=4,∠BAD=60°,則$\overrightarrow{AC}$•$\overrightarrow{EB}$等于( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在三棱錐E一ABC中,AB⊥AC,AB=1,AC=$\frac{\sqrt{2}}{2}$,點D在線段BC上,且BD=2CD,ED⊥平面ABC.
(I)證明:AD⊥BE;
(Ⅱ)若AD=DE,求直線CE與平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)點P在雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右支上,雙曲線的左、右焦點分別為F1,F(xiàn)2,若|PF1|=4|PF2|,則雙曲線離心率的取值范圍是(  )
A.$({1,\frac{5}{3}}]$B.(1,2]C.$[{\frac{5}{3},+∞})$D.[2,+∞)

查看答案和解析>>

同步練習(xí)冊答案