已知cosα=-
4
5
,α∈(π,
2
),求tan(α+
π
4
)的值.
分析:根據(jù)同角三角函數(shù)關系sin2α+cos2α=1求出sinα,進而得出tanα,再根據(jù)兩角和與差公式求出結果.
解答:解:∵cosα=-
4
5
,α∈(π,
2
),
∴sinα=-
1-cos2
α
=-
3
4

tanα=
sinα
cosα
=
3
4

∴tan(α+
π
4
)=
tanα+tan
π
4
1-tanαtan
π
4
=
3
4
+1
1-
3
4
=7
點評:本題考查的知識是同角三角函數(shù)間的基本關系以及兩角和與差公式,熟練掌握公式是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知cosα=-
4
5
,α∈(
π
2
,π),tan(π-β)=
1
2
,求tan(α-2β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosθ=
4
5
,且
2
<θ<2π
,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cos(α+β)=
4
5
,cos(α-β)=-
4
5
,
2
<α+β<2π
,,
π
2
<α-β<π
求cos2α,cos2β的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosθ=
4
5
,θ
為第四象限角,求sin
θ
2
,cos
θ
2
,tan
θ
2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=
4
5
,其中α為第四象限角;
(1)求tanα的值;
(2)計算
sinα+cosα
sinα-cosα
的值.

查看答案和解析>>

同步練習冊答案