如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=
6
,O為AC與BD的交點(diǎn),E為棱PB上一點(diǎn).
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P-EAD的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,平面與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)由已知得AC⊥PD,AC⊥BD,由此能證明平面EAC⊥平面PBD.
(Ⅱ)由已知得PD∥OE,取AD中點(diǎn)H,連結(jié)BH,由此利用VP-EAD=VE-PAD=
1
2
VB-PAD
,能求出三棱錐P-EAD的體積.
解答: (Ⅰ)證明:∵PD⊥平面ABCD,AC?平面ABCD,
∴AC⊥PD.∵四邊形ABCD是菱形,∴AC⊥BD,
又∵PD∩BD=D,AC⊥平面PBD.
而AC?平面EAC,∴平面EAC⊥平面PBD.

(Ⅱ)解:∵PD∥平面EAC,平面EAC∩平面PBD=OE,
∴PD∥OE,
∵O是BD中點(diǎn),∴E是PB中點(diǎn).
取AD中點(diǎn)H,連結(jié)BH,∵四邊形ABCD是菱形,∠BAD=60°,
∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BD⊥平面PAD,BH=
3
2
AB=
3

VP-EAD=VE-PAD=
1
2
VB-PAD

=
1
2
×
1
3
×S△PAD×BH
=
1
6
×
1
2
×2×
6
×
3
=
2
2
點(diǎn)評(píng):本題考查平面與平面垂直的證明,考查三棱錐的體積的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)經(jīng)過原點(diǎn)的是(  )
A、y=2x-1
B、y=x-1
C、y=log2x
D、y=-x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P(2,-3)在曲線x2-ay2=1上,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+
1
x
+ax,x∈(0,+∞)(a為實(shí)常數(shù)).若f(x)在[2,+∞)上是單調(diào)函數(shù),則a的取值范圍是(  )
A、(-∞,-
1
4
]
B、(-∞,-
1
4
]∪[0,+∞)
C、(-∞,0)∪[
1
4
,+∞]
D、(-∞,0)∪(
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長(zhǎng)為2,點(diǎn)E、F分別在邊AB、BC上,且AE=1,BF=
1
2
,將此正方形沿DE、DF折起,使點(diǎn)A、C重合于點(diǎn)P,則三棱錐P-DEF的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體的四個(gè)頂點(diǎn)構(gòu)成的幾何體的三視圖如圖,若各視圖均為邊長(zhǎng)為2的正方形,則這個(gè)幾何體的體積是(  )
A、
4
3
B、
8
3
C、
16
3
D、
20
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ∈[-
3
,
π
6
],試確定cosθ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=2x2-1在[1,3]上的最小值是
 
,最大值為
 
,值域?yàn)?div id="se2ucac" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地綠化治理沙漠需要大量用水,第1年的用水量約為100(百噸),第2年的用水量約為120(百噸).該地政府綜合各種因素預(yù)測(cè):①每年的用水量會(huì)逐年增加;②每年的用水量都不能達(dá)到130(百噸).某校數(shù)學(xué)興趣小組想找一個(gè)函數(shù)y=f(x)來擬合該項(xiàng)目第x(x≥1)年與當(dāng)年的用水量y(單位:百噸)之間的關(guān)系,則函數(shù)y=f(x)必須符合預(yù)測(cè)①:f(x)在[1,+∞)上單調(diào)遞增;預(yù)測(cè)②:f(x)<130對(duì)x∈[1,+∞)恒成立.
(1)若f(x)=
m
x
+n,試確定m,n的值,并考察該函數(shù)是否符合上述兩點(diǎn)預(yù)測(cè);
(2)若f(x)=a•bx+c(b>0,b≠1),欲使得該函數(shù)符合上述兩點(diǎn)預(yù)測(cè),試確定b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案