設兩條直線的方程是l1:A1x+B1y+C1=0,l2:A2x+B2y+Cx=0,當兩直線l1l2相交時,方程組有________解;當l1l2時,方程組有________;當l1l2重合時,方程組有________;反之仍然成立.

答案:
解析:

惟一,無實數(shù)根,無窮多解


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線S的兩個焦點F1、F2在x軸上,它的兩條漸近線分別為l1、l2,y=
3
3
x是其中的一條漸近線的方程,兩條直線X=±
3
2
是雙曲線S的準線.
(I)設A、B分別為l1、l2上的動點,且2|
AB
|=5
F1F2
,求線段AB的中點M的軌跡方程:
(II)已知O是原點,經(jīng)過點N(0,1)是否存在直線l,使l與雙曲線S交于P,E且△POE是以PE為斜邊的直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓的方程為x2+y2=4,過點M(2,4)作圓的兩條切線,切點分別為A1、A2,直線A1A2恰好經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點和上頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)垂直于x軸的一條弦,AB所在直線的方程為x=m(|m|<a且m≠0),P是橢圓上異于A、B的任意一點,直線AP、BP分別交定直線l:x=
a2
m
于兩點Q、R,求證
OQ
OR
>4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1的方程是
x2
4
+y2=1
,雙曲線C2的左、右焦點分別為C1的左、右頂點,C2的左、右頂點分別為C1的左、右焦點.
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+
2
與雙曲線C2恒有兩個不同的交點A,B,且
OA
OB
>2
(O為原點),求k的取值范圍;
(3)設P1,P2分別是C2的兩條漸近線上的點,點M在C2上,且
OM
=
1
2
(
OP1
+
OP2
)
,求△P1OP2的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年云南省高三第二次復習統(tǒng)測數(shù)學試卷(理科)(解析版) 題型:解答題

已知雙曲線S的兩個焦點F1、F2在x軸上,它的兩條漸近線分別為l1、l2,y=x是其中的一條漸近線的方程,兩條直線X=±是雙曲線S的準線.
(I)設A、B分別為l1、l2上的動點,且2||=5,求線段AB的中點M的軌跡方程:
(II)已知O是原點,經(jīng)過點N(0,1)是否存在直線l,使l與雙曲線S交于P,E且△POE是以PE為斜邊的直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年云南省高三第二次復習統(tǒng)測數(shù)學試卷(文科)(解析版) 題型:解答題

已知雙曲線S的兩個焦點F1、F2在x軸上,它的兩條漸近線分別為l1、l2,y=x是其中的一條漸近線的方程,兩條直線X=±是雙曲線S的準線.
(I)設A、B分別為l1、l2上的動點,且2||=5,求線段AB的中點M的軌跡方程:
(II)已知O是原點,經(jīng)過點N(0,1)是否存在直線l,使l與雙曲線S交于P,E且△POE是以PE為斜邊的直角三角形?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案