. (本小題滿(mǎn)分14分)

第21題

設(shè)雙曲線(xiàn)=1( a > 0, b > 0 )的右頂點(diǎn)為A,P是雙曲線(xiàn)上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),從A引雙曲線(xiàn)的兩條漸近線(xiàn)的平行線(xiàn)與直線(xiàn)OP分別交于Q和R兩點(diǎn).

(1) 證明:無(wú)論P(yáng)點(diǎn)在什么位置,總有||2 = |·| ( O為坐標(biāo)原點(diǎn));

(2) 若以O(shè)P為邊長(zhǎng)的正方形面積等于雙曲線(xiàn)實(shí)、虛軸圍成的矩形面積,求雙曲線(xiàn)離心率的取值范圍;

(Ⅰ) 略   (Ⅱ)  e >    


解析:

:(1) 設(shè)OP:y = k x,    又條件可設(shè)AR: y = (x – a ),

   解得:= (,),    同理可得= (,),     

∴|·| =|+| =.           4分

   設(shè) = ( m, n ) , 則由雙曲線(xiàn)方程與OP方程聯(lián)立解得:

m2 =, n2 = ,    

∴ ||2 = :m2 + n2 = + = ,

∵點(diǎn)P在雙曲線(xiàn)上,∴b2 – a2k2 > 0 .

  ∴無(wú)論P(yáng)點(diǎn)在什么位置,總有||2 = |·| .                    4分

(2)由條件得:= 4ab,      2分

即k2 = > 0 , ∴ 4b > a, 得e >    2分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿(mǎn)分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分14分)設(shè)橢圓C1的方程為(ab>0),曲線(xiàn)C2的方程為y=,且曲線(xiàn)C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿(mǎn)分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿(mǎn)分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.

(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分14分)已知的圖像在點(diǎn)處的切線(xiàn)與直線(xiàn)平行.

⑴ 求,滿(mǎn)足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案