【題目】將函數(shù)y=cos2x的圖象向左平移 個(gè)單位,得到函數(shù)y=f(x)cosx的圖象,則f(x)的表達(dá)式可以是( )
A.f(x)=﹣2sinx
B.f(x)=2sinx
C.f(x)= sin2x
D.f(x)= (sin2x+cos2x)
【答案】A
【解析】解:將函數(shù)y=cos2x的圖象向左平移 個(gè)單位,可得y=cos2(x+ )=cos(2x+ )=﹣sin2x=﹣2cosxsinx, ∵y=f(x)cosx,
∴f(x)=﹣2sinx.
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次國際學(xué)術(shù)會(huì)議上,來自四個(gè)國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國人,還會(huì)說英語.
乙是法國人,還會(huì)說日語.
丙是英國人,還會(huì)說法語.
丁是日本人,還會(huì)說漢語.
戊是法國人,還會(huì)說德語.
則這五位代表的座位順序應(yīng)為( )
A.甲丙丁戊乙
B.甲丁丙乙戊
C.甲乙丙丁戊
D.甲丙戊乙丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣k( +lnx),若x=2是函數(shù)f(x)的唯一一個(gè)極值點(diǎn),則實(shí)數(shù)k的取值范圍為( )
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2eax .
(Ⅰ)當(dāng)a<0時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)在(1)條件下,求函數(shù)f(x)在區(qū)間[0,1]上的最大值;
(Ⅲ)設(shè)函數(shù)g(x)=2ex﹣ ,求證:當(dāng)a=1,對(duì)x∈(0,1),g(x)﹣xf(x)>2恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(Ⅰ)已知函數(shù)f(x)=|x+1|+|x﹣a|(a>0),若不等式f(x)≥5的解集為{x|x≤﹣2或x≥3},求a的值;
(Ⅱ) 已知實(shí)數(shù)a,b,c∈R+ , 且a+b+c=m,求證: + + ≥ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性,并說明理由;
(3)判斷函數(shù)在區(qū)間上的單調(diào)性,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時(shí)函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域?yàn)?/span>,解不等式.
【答案】(1)奇函數(shù)(2)增函數(shù)(3)
【解析】試題分析:(1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)與f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。(2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個(gè)步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。
試題解析:(1)函數(shù)為奇函數(shù).證明如下:
定義域?yàn)?/span>
又
為奇函數(shù)
(2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:
任取,則
,
即
故在(-1,1)上為增函數(shù)
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點(diǎn)睛】
(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,再判斷f(-x)與f(x)的關(guān)系,如果對(duì)定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。
(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號(hào),下結(jié)論五個(gè)步驟。
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù).
(1)若的定義域和值域均是,求實(shí)數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;
(3)若,且對(duì)任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a1 , a2 , …,an∈R,n≥3.若p:a1 , a2 , …,an成等比數(shù)列;q:(a +a +…+a )(a +a +…+a )=(a1a2+a2a3+…+an1an)2 , 則p是q的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2017x+sin2017x,g(x)=log2017x+2017x , 則( )
A.對(duì)于任意正實(shí)數(shù)x恒有f(x)≥g(x)
B.存在實(shí)數(shù)x0 , 當(dāng)x>x0時(shí),恒有f(x)>g(x)
C.對(duì)于任意正實(shí)數(shù)x恒有f(x)≤g(x)
D.存在實(shí)數(shù)x0 , 當(dāng)x>x0時(shí),恒有f(x)<g(x)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com