18.已知直線l1:ax+2y+6=0和直線l2:x+(a-1)y+a2-1=0
(1)當(dāng)l1⊥l2時(shí),求a的值;
(2)在(1)的條件下,若直線l3∥l2,且l3過點(diǎn)A(1,-3),求直線l3的一般方程.

分析 (1)利用兩條直線垂直的充要條件即可得出.
(2)根據(jù)平行可設(shè)${l_3}:x-\frac{1}{3}y+C=0$,代值計(jì)算即可.

解答 解:(1)由${A_1}{A_2}+{B_1}{B_2}=0⇒a+2({a-1})=0⇒a=\frac{2}{3}$;
(2)由(1),${l_2}:x-\frac{1}{3}y-\frac{5}{9}=0$,
又l3∥l2,設(shè)${l_3}:x-\frac{1}{3}y+C=0$,
把(1,-3)代入上式解得C=-2,
所以${l_3}:x-\frac{1}{3}y-2=0$.

點(diǎn)評(píng) 本題考查了兩條直線平行、兩條直線垂直的條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.下表數(shù)據(jù)為某地區(qū)某基地某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)及對(duì)應(yīng)銷售價(jià)格y(單位:萬元/噸).
x123
y543
(1)若y與x有較強(qiáng)的線性相關(guān)關(guān)系,請(qǐng)用最小二乘法求出y關(guān)與x的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(2)若每噸該農(nóng)產(chǎn)品的成本為1萬元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少噸時(shí),年利潤(rùn)z最大?最大利潤(rùn)是多少?
參考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}{y_i}})}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)三角形的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且a=2bsinA.其中角B為銳角.
(1)求B的大小;
(2)求cosA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將正整數(shù)排成下表:

則在表中數(shù)字2015出現(xiàn)在( 。
A.第44行第78列B.第45行第79列C.第44行第77列D.第45行第77列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知$\overrightarrow m=({sin({x-\frac{π}{6}}),1}),\overrightarrow n=({cosx,1})$.,
(1)若$\overrightarrow m∥\overrightarrow n$,求tanx的值;
(2)若函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$,求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x3+ax2+bx在x=-1與x=2處都取得極值.
(Ⅰ)求a,b的值及函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若x∈[-2,3]時(shí),f(x)<m恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)等差數(shù)列{an}的前n項(xiàng)和Sn,a1+a2=-20,a4+a6=-6,則當(dāng)Sn取最小值時(shí),n等于( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-3,
(1)求函數(shù)f(x)的圖象在點(diǎn)(1,0)處的切線方程;
(2)求函數(shù)f(x)在區(qū)間$[t,t+\frac{1}{e}](t>0)$上的最小值;
(3)對(duì)一切實(shí)數(shù)x∈(0,+∞),2f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過半徑為4的球O表面上一點(diǎn)A作球O的截面,若OA與該截面所成的角是30°,則該截面的面積是12π.

查看答案和解析>>

同步練習(xí)冊(cè)答案