在下列四個(gè)函數(shù)中,滿足性質(zhì):“對(duì)于區(qū)間(1,2)上的任意x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”的只有( 。
A、f(x)=
1
x
B、f(x)=|x|
C、f(x)=2
D、f(x)=x2
考點(diǎn):函數(shù)恒成立問(wèn)題
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:|f(x2)-f(x1)|<|x2-x1|可化成
|f(x1)-f(x2)|
|x1-x2|
<1,表示的是函數(shù)圖象上任意兩點(diǎn)連線的斜率的絕對(duì)值,而四個(gè)選項(xiàng)中的函數(shù)都是(1,2)上可導(dǎo)的函數(shù),因此即轉(zhuǎn)化為它們的導(dǎo)數(shù)值的絕對(duì)值在(1,2)內(nèi)是否恒小于1的問(wèn)題,對(duì)四個(gè)選項(xiàng)中的函數(shù)分別求導(dǎo),判斷導(dǎo)函數(shù)的值域是否是(-1,1)或是(-1,1)的子集即可.
解答: 解:因?yàn)閷?duì)于區(qū)間(1,2)上的任意x1,x2(x1≠x2),|f(x2)-f(x1)|<|x2-x1|恒成立”
所以函數(shù)圖象上任意兩點(diǎn)連線的斜率的絕對(duì)值小于1即可,又因?yàn)樗膫(gè)函數(shù)均是(1,2)上的可導(dǎo)函數(shù),則在(1,2)內(nèi)總能找到一條切線平行于任意兩點(diǎn)連線,則問(wèn)題即轉(zhuǎn)化為
在(1,2)上四個(gè)函數(shù)的導(dǎo)數(shù)絕對(duì)值是否滿足恒在(0,1)取值即可,
對(duì)于A:|f′(x)|=
1
x2
,當(dāng)x∈(1,2)時(shí),f′(x)∈(
1
4
,1)
⊆(0,1),故A符合題意;
對(duì)于B:由題意f(x)=x,f′(x)=1,故B不滿足題意;
對(duì)于C:函數(shù)f(x)=2x,所以f′(x)=2>1,故C不滿足題意;
對(duì)于D:f′(x)=2x,當(dāng)x∈(1,2)時(shí),f′(x)∈(2,4),故D不滿足題意.
故選:A.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的幾何意義,實(shí)際上是對(duì)于可導(dǎo)函數(shù)而言,割線在沿著某個(gè)方向平移的過(guò)程中極限位置是某點(diǎn)處的切線,從而將問(wèn)題轉(zhuǎn)化為導(dǎo)數(shù)的問(wèn)題求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
log
1
2
(2x-1)
的定義域是( 。
A、[1,+∞)
B、(0,+∞)
C、[0,1]
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2ax2+2x-3-a(a∈R,且a≠0),求拋物線y=f(x)的對(duì)稱(chēng)軸方程及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+2,求函數(shù)f(x)在區(qū)間[1,+∞)上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
|x+1|+|x-2|+a

(1)當(dāng)a=-5時(shí),求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的定義域?yàn)镽,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正△AOB頂點(diǎn)O位于坐標(biāo)原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線y2=2px(p>0)上,已知△AOB周長(zhǎng)12
3
,求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C和y軸相切,圓心在直線x-3y=0上,且被直線y=x截得的弦長(zhǎng)為2
7

(1)求圓C的方程;  
(2)判斷圓C與圓M:(x-10)2+(y-10)2=1的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)為二次函數(shù),且f(0)=1,f(x+1)=f(x)+2x.
(1)求f(x)的解析式;
(2)若3≤x≤4時(shí),t≤f(x)≤2t+7恒成立,求實(shí)數(shù)t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

試構(gòu)造函數(shù)f(x)使得:
(1)f(x)定義域?yàn)椋?,1),值域?yàn)閇0,1];
(2)f(x)定義域?yàn)椋?,1),值域?yàn)閇0,1]且f(x)值域上每一點(diǎn)有且只有一個(gè)原象與之對(duì)應(yīng);
(3)f(x)定義域?yàn)椋?,1),值域?yàn)閇0,1]且f(x)值域上每一點(diǎn)都有無(wú)數(shù)個(gè)原象與之對(duì)應(yīng).

查看答案和解析>>

同步練習(xí)冊(cè)答案