若實數(shù)x,y滿足
x≥0
y≥0
x+y≤1
,則z=3x+y的最大值為
 
,最小值為
 
考點:簡單線性規(guī)劃
專題:計算題,作圖題,不等式的解法及應用
分析:由題意作出其平面區(qū)域,將z=3x+y化為y=-3x+z,z相當于直線y=-3x+z的縱截距,由幾何意義可得.
解答: 解:由題意作出其平面區(qū)域,

將z=3x+y化為y=-3x+z,z相當于直線y=-3x+z的縱截距,
則當x=y=0時,z=3x+y有最小值0;
當x=1,y=0時,有最大值3;
故答案為:3,0.
點評:本題考查了簡單線性規(guī)劃,作圖要細致認真,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知AB⊥平面BCD,BC⊥CD.共有
 
對面面垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,且2an+1-an=n,其中n=1,2,3,….若bn=an+1-an-1.
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,矩形CDEF中DF=2CD=2,將平面ABCD沿著中線AB折成一個直二面角(如圖2),點M在AC上移動,點N在BF上移動,若CM=BN=a(0<a<
2
).

(1)求MN的長;
(2)當a為何值時,MN的長最;
(3)當MN長最小時,求面MNA與面MNB所成的鈍二面角α的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
1×2
+
1
2×3
+…+
1
n×(n+1)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b是異面直線,下列命題正確的是(  )
A、過不在a、b上的一點P一定可以作一條直線和a、b都相交
B、過不在a、b上的一點P一定可以作一個平面和a、b都垂直
C、過a一定可以作一個平面與b垂直
D、過a一定可以作一個平面與b平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題p:“方程x2+
y2
m
=1是焦點在y軸上的橢圓”,命題q:“函數(shù)f(x)=
4
3
x3-2mx2
+(4m-3)x-m在(-∞,+∞)上單調(diào)遞增”,若p∧q 是假命題,p∨q是真命題,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a、b、c 為三條直線,α為一個平面,則下列結論成立的是( 。
A、若a∥b,b?α,則a∥α
B、若a⊥b,b⊥c,則a⊥c
C、若a∥α,b∥α,則a∥b
D、若a⊥α,b⊥α,則a∥b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3-cos(ωx+ϕ),(其中ω>0,0<ϕ<
π
2
),若y=f(x)的圖象的相鄰兩對稱軸之間的距離為2,且過點M(1,
7
2

(Ⅰ)求f(x)表達式;
(Ⅱ)將函數(shù)y=f(x)的圖象按向量
d
=(m,n)平移,使平移后的圖象關于原點成中心對稱,求長度最小的向量
d

查看答案和解析>>

同步練習冊答案