【題目】(本題滿分16分)已知,都是各項不為零的數(shù)列,且滿足,,其中是數(shù)列的前項和,是公差為的等差數(shù)列.

1)若數(shù)列是常數(shù)列,,求數(shù)列的通項公式;

2)若是不為零的常數(shù)),求證:數(shù)列是等差數(shù)列;

3)若為常數(shù),), ,求證:對任意的,數(shù)列單調(diào)遞減.

【答案】1;(2)詳見解析;(3)詳見解析;

【解析】

試題(1)由已知條件可化得數(shù)列的前和,再作差求得通項,要注意分類討論;(2)與(1)的思路相同,利用和作差,得到項之間的關系式,進而表示出數(shù)列的通項,利用等差數(shù)列的定義進行證明,還應注意補充說明;(3)由(2)中和作差后的通項間的關系式可推得的關系式,則證得從第2項起成等比數(shù)列,求得其通項公式,同時也求得數(shù)列從第二項起是等差數(shù)列,所以從第2項起為差比數(shù)列,通過作差或作商可以研究它的單調(diào)性;

試題解析:(1)因為,,所以

因為數(shù)列是各項不為零的常數(shù)列,所以,,

則由,

時,,兩式相減得,

時,,也滿足,故

2)因為,

時,,兩式相減得

,,即

,所以,

,

所以當時,,兩式相減得 ,

所以數(shù)列從第二項起是公差為等差數(shù)列;

又當時,由

時,由,

故數(shù)列是公差為等差數(shù)列.

3)由(2)得當時,,即,

因為,所以,即,所以,即,

所以,

時,,兩式相減得,

,故從第二項起數(shù)列是等比數(shù)列,

所以當時,,

另外由已知條件得,又,,,

所以,因而,令 ,則

因為,所以,所以對任意的,數(shù)列單調(diào)遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的前n項和,且滿足,數(shù)列是首項為2,公比為q)的等比數(shù)列.

1)求數(shù)列的通項公式;

2)設正整數(shù)k,tr成等差數(shù)列,且,若,求實數(shù)q的最大值;

3)若數(shù)列滿足,其前n項和為,當時,是否存在正整數(shù)m,使得恰好是數(shù)列中的項?若存在,求岀m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若拋物線的焦點是,準線是,點是拋物線上一點,則經(jīng)過點、且與相切的圓共( )

A. 0個 B. 1個 C. 2個 D. 4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線與曲線,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

1)寫出曲線,的極坐標方程;

2)在極坐標系中,已知的公共點分別為,,,當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.

1)證明:當取得最小值時,橢圓的離心率為.

2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個零點,().

i)求的取值范圍;

ii)求證:隨著的增大而增大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地環(huán)保部門跟蹤調(diào)查一種有害昆蟲的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲的數(shù)量(萬只)與時間(年)(其中的關系為.為有效控制有害昆蟲數(shù)量、保護生態(tài)環(huán)境,環(huán)保部門通過實時監(jiān)控比值其中為常數(shù),且)來進行生態(tài)環(huán)境分析.

(1)當時,求比值取最小值時的值;

(2)經(jīng)過調(diào)查,環(huán)保部門發(fā)現(xiàn):當比值不超過時不需要進行環(huán)境防護.為確保恰好3年不需要進行保護,求實數(shù)的取值范圍.為自然對數(shù)的底

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的離心率為,過焦點且與軸垂直的直線被橢圓截得的線段長為.

1)求橢圓的方程;

2)已知點,過點的任意一條直線與橢圓交于兩點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過不懈的奮力拼搏,新農(nóng)村建設取得巨大進步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關于加快提升農(nóng)民年收人力爭早日脫貧的工作計劃,該地扶貧辦統(tǒng)計了2018年位農(nóng)民的年收人并制成如下頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);

(2)由頻率分布直方圖,可以認為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求:

(i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準扶貧,不落一人”的政策要求落實情況,扶貧辦隨機走訪了位農(nóng)民。若每個農(nóng)民的年收人相互獨立,問:這位農(nóng)民中的年收入不少于千元的人數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式

則①;②;③.

查看答案和解析>>

同步練習冊答案