已知x,y,z均為實數(shù),
(1)x+y+z=1,求證:
3x+1
+
3y+2
+
3z+3
≤3
3

(2)若x+2y+3z=6,求x2+y2+z2的最小值.
考點:二維形式的柯西不等式
專題:綜合題,不等式的解法及應(yīng)用,推理和證明
分析:(1)由題意,根據(jù)柯西不等式有(
3x+1
+
3y+2
+
3z+3
2≤(12+12+12)[(
3x+1
2+(
3y+2
2+(
3z+3
2]=3[3(x+y+z)+6]=3×9=27,即可證明結(jié)論;
(2)由條件利用柯西不等式(12+22+32)(x2+y2+z2)≥(x+2y+3z)2,求得x2+y2+z2的最小值.
解答: (1)證明:由題意,根據(jù)柯西不等式有(
3x+1
+
3y+2
+
3z+3
2≤(12+12+12)[(
3x+1
2+(
3y+2
2+(
3z+3
2]=3[3(x+y+z)+6]=3×9=27,
所以
3x+1
+
3y+2
+
3z+3
≤3
3

(2)12+22+32=14,∴由柯西不等式可得(12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,
∴x2+y2+z2
18
7
,即x2+y2+z2的最小值是
18
7
點評:本題考查不等式的證明,考查柯西不等式的運用,考查學(xué)生分析解決問題的能力,正確運用柯西不等式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
的夾角為120°,且|
a
|=|
b
|=1,
c
=
1
2
a
+
1
4
b
,則
a
c
的夾角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)對于任意x.∈R,都有f(x+4)=-
1
f(x)
,設(shè)an=f(n)(n∈N),則
f(200)+f(201)+f(202)+f(203)
f(8)+f(9)+f(10)+f(11)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(2-x)n=a0+a1x+a2x2+…+anxn,An=a1+a2+…+an,則
lim
n→∞
2-An
8+3An
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx+cosx,記f1(x)=f′(x),f2(x)=f1′(x),…,fn(x)=fn-1′(x)(n∈N*且n≥2),試計算f1(x),f2(x),f3(x),f4(x),并猜想f2010(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機變量ξ~N(μ,?2),且P(ξ<-1)=P(ξ>2)=0.3,則P=(-2<ξ<0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程組
x-y+1=0
2x+y-4=0
的解集可表示為:(1)(1,2);(2){(1,2)};(3){(x,y)|x=1,y=2};(4)
x=1
y=2
;(5){(x,y)|
x=1
y=2
},其中正確的個數(shù)有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3
的正弦值、余弦值和正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD,側(cè)面PAD⊥底面ABCD,側(cè)面PAD為等邊三角形,底面ABCD為棱形且∠DAB=
π
3

(Ⅰ)求證:PB⊥AD;
(Ⅱ)求平面PAB與平面PCD所成的角(銳角)的余弦值.

查看答案和解析>>

同步練習(xí)冊答案