經(jīng)濟(jì)損失不超過4000元 | 經(jīng)濟(jì)損失超過4000元 | 合計 | |
捐款超過500元 | 30 | ||
損款不超過500元 | 6 | ||
合計 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (1)求得各組區(qū)間的中點(diǎn)值,計算各個矩形的面積之和即可;
(2)由頻率分布直方圖可得,損失超過4000元的居民共有15戶;損失超過8000元的居民共有3戶,因此,ξ可能取值為0,1,2,運(yùn)用排列組合的知識,可得各自的概率,由期望公式計算即可得到;
(3)由(2)可得a,b,c,d,運(yùn)用臨界值參考公式,計算即可得到結(jié)論.
解答 解:(1)記每戶居民的平均損失為$\overline x$元,則
$\overline{x}$=(1000×0.00015+3000×0.0002+5000×0.00009+7000×0.00003+9000×0.00003)×2000
=3360;
(2)由頻率分布直方圖可得,損失超過4000元的居民共有(0.00009+0.00003+0.00003)×2000×50=15戶,損失超過8000元的居民共有0.00003×2000×50=3戶,因此,ξ可能取值為0,1,2$P(ξ=0)=\frac{{C_{12}^3}}{{C_{15}^3}}=\frac{22}{35}$,$P(ξ=1)=\frac{{C_3^1C_{12}^3}}{{C_{15}^3}}=\frac{12}{35}$,$P(ξ=2)=\frac{C_3^2}{{C_{15}^3}}=\frac{1}{35}$,ξ的分布列為
ξ | 0 | 1 | 2 |
P | $\frac{22}{35}$ | $\frac{12}{35}$ | $\frac{1}{35}$ |
經(jīng)濟(jì)損失不超過4000元 | 經(jīng)濟(jì)損失超過4000元 | 合計 | |
捐款超過500元 | 30 | 9 | 39 |
損款不超過500元 | 5 | 6 | 11 |
合計 | 35 | 15 | 50 |
點(diǎn)評 本題考查根據(jù)頻率分布直方圖求均值,以及隨機(jī)分布的概率和期望的計算,考查獨(dú)立性檢驗(yàn)的概率情況,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{9}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com