【題目】函數(shù)f(x)= + 的值域?yàn)?/span> .
【答案】[ , ]
【解析】解:函數(shù)f(x)= + ,其函數(shù)的定義域?yàn)閧x|0≤x≤2}.那么:f′(x)=﹣
令f′(x)=0,解得:x= ,
∴當(dāng)x∈(0, )時,f′(x)>0,f(x)是單調(diào)增函數(shù).
當(dāng)x∈( ,2)時,f′(x)<0,f(x)是單調(diào)減函數(shù).
∴當(dāng)x= 時,f(x)取得極大值,即最大值為 .
當(dāng)x=0時,f(x)=2,當(dāng)x=2時,f(x)= .
所以得函數(shù)f(x)的值域?yàn)閇 , ].
所以答案是:[ , ].
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的值域的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=4,BC=2,D是BC的中點(diǎn),那么( ﹣ ) =;若E是AB的中點(diǎn),P是△ABC(包括邊界)內(nèi)任一點(diǎn).則 的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=﹣1, =Sn , 求數(shù)列{an}的前n項(xiàng)和Sn= , 通項(xiàng)公式an= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為S,a2+a6=20,S5=40.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}滿足b2=a3 , b3=a7.若b6=ak , 求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|4x﹣1|<9,x∈R},B={x| ≥0,x∈R},則(RA)∩B=( )
A.(﹣∞,﹣3)∪[ ,+∞)
B.(﹣3,﹣2]∪[0, )??
C.(﹣∞,﹣3]∪[ ,+∞)
D.(﹣3,﹣2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),滿足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證: ;
(2)若{an}是等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形是正方形, , , , 都是等邊三角形, 、、、分別是線段、、、的中點(diǎn),分別以、、、為折痕將四個等邊三角形折起,使得、、、四點(diǎn)重合于一點(diǎn),得到一個四棱錐.對于下面四個結(jié)論:
①與為異面直線; ②直線與直線所成的角為
③平面; ④平面平面;
其中正確結(jié)論的個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;
(II)解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是公差不為零的等差數(shù)列,滿足數(shù)列的通項(xiàng)公式為
(1)求數(shù)列的通項(xiàng)公式;
(2)將數(shù)列,中的公共項(xiàng)按從小到大的順序構(gòu)成數(shù)列,請直接寫出數(shù)列的通項(xiàng)公式;
(3)記,是否存在正整數(shù) ,使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com