已知
(1)若,求x的范圍;
(2)求的最大值以及此時(shí)x的值.

(1)(2),.

解析試題分析:(1)根據(jù)向量的數(shù)量積公式,化簡(jiǎn)f(x)≥1得cos2x-cosx≤0,從而得到0≤cosx≤1.再由余弦函數(shù)的圖象與性質(zhì)解此不等式,即可求出x的范圍;
(2)由(1)得f(x)=sin2x+cosx,利用同角三角函數(shù)的關(guān)系化簡(jiǎn)、配方得f(x)═,由此可得cosx=時(shí),f(x)的最大值為,根據(jù)余弦函數(shù)的圖象與性質(zhì),可得相應(yīng)x的值..
試題解析:解:(1)
,
(2)

考點(diǎn):1.平面向量數(shù)量積的運(yùn)算;2.正弦函數(shù)的定義域和值域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=,x∈,
(1) 當(dāng)a=時(shí),求函數(shù)f(x)的最小值;
(2) 若函數(shù)的最小值為4,求實(shí)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求的解集;
(2)設(shè)函數(shù),若對(duì)任意的都成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),判斷的單調(diào)性,并用定義證明;
(2)若對(duì)任意,不等式恒成立,求的取值范圍;
(3)討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:對(duì)任意的,存在唯一的,使;
(3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時(shí),有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若不等式有解,求實(shí)數(shù)m的取值菹圍;
(3)證明:當(dāng)a=0時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/54/b/1px9r3.png" style="vertical-align:middle;" />的偶函數(shù).當(dāng)時(shí),若關(guān)于的方程有且只有7個(gè)不同實(shí)數(shù)根,則的值是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/91/6/opi5k1.png" style="vertical-align:middle;" />,且,,
當(dāng),,時(shí)恒成立.
(1)判斷上的單調(diào)性;
(2)解不等式;
(3)若對(duì)于所有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=,x∈[1,+∞).
(1)當(dāng)a=時(shí),求f(x)的最小值;
(2)若對(duì)任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案